第三章三角函数解三角形第八节正弦定理和余弦定理的应用举例考情展望以实际问题为背景考查利用正余弦定理等知识和方法解决一些与测量高度距离有关的实际问题固本源练基础理清教材1用正弦定理和余弦定理解三角形的常见题型测量距离问题高度问题角度问题计算面积问题航海问题物理问题等2实际应用中的常用术语基础梳理基础训
高考数学大一轮复习Tag内容描述:
1、第6节 二次函数与幂函数,整合主干知识,1二次函数 (1)定义 函数_____________________叫做二次函数 (2)表示形式 一般式:___________________; 顶点式:___________________,其中_______为抛物线顶点坐标; 零点式:y___________________,其中x1、x2是抛物线与x轴交点的横坐标,yax2bxc(a0),yax2bxc(a0),ya(xh)2k(a0),(h,k),a(xx1)(xx2)(a0),(3)图象与性质,2.幂函数 (1)幂函数的概念 形如yx(R)的函数称为幂函数,其中x是_______,为_____,自变量,常数,(2)常见幂函数的图象与性质,质疑探究:幂函数图象均过定点(1,1)吗? 提示:是,根据。
2、第七章 立体几何,第五节 直线、平面垂直的判定及其性质,考情展望 1.本节从内容上考查线线垂直、线面垂直、面面垂直的判定与应用问题.2.从能力上考查空间想象能力、逻辑思维能力,考查转化与化归思想的应用能力.3.从题型上主要以正方体、长方体、棱柱、棱锥等多面体为载体,利用填空题或解答题的形式进行考查,试题难度一般都是中档难度,也有少部分试题为中等偏上难度,固本源 练基础 理清教材,基础梳理,(2)直线与平面垂直的判定与性质.,4两个平面垂直 (1)定义 两个平面相交,如果它们所成的二面角是________,就说这两个平面互相垂直 (2)。
3、3.2 导数与函数的单调性、 极值、最值,数学 粤(理),第三章 导数及其应用,基础知识自主学习,基础知识自主学习,基础知识自主学习,极大值,极小值,基础知识自主学习,基础知识自主学习,极值,A,B,基础知识自主学习,C,夯 基 释 疑,返回,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,题型分类深度剖析,(2,2a),题型。
4、3.4 定积分,数学 粤(理),第三章 导数及其应用,基础知识自主学习,分割,近似代替,求和,取极限,基础知识自主学习,C,3,基础知识自主学习,B,夯 基 释 疑,返回,题型分类深度剖析,思维启迪,解析,答案,思维升华,题型分类深度剖析,思维启迪,解析,答案,思维升华,题型分类深度剖析,思维启迪,解析,答案,思维升华,题型分类深度剖析,思维启迪,解析,答案,思维升华,题型分类深度剖析,思维启迪,解析,答案,思维升华,题型分类深度剖析,思维启迪,解析,答案,思维升华,题型分类深度剖析,1,0,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启。
5、第2节 同角三角函数基本关系及诱导公式,整合主干知识,1同角三角函数的基本关系 (1)平方关系:sin2_cos2_1.,2下列各角的终边与角的终边的关系,相同,关于原点对称,关于x轴对称,关于y轴对称,关于直线yx 对称,3.六组诱导公式,sin ,sin ,sin ,sin ,cos ,cos ,cos ,cos ,cos ,cos ,sin ,sin ,tan ,tan ,tan ,tan ,1给出下列命题: sin2cos21; 同角三角函数的基本关系式中角可以是任意角; 六组诱导公式中的角可以是任意角; 诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与的大小无关;,答案:B,答案:A,答案:1,聚集热点题型,同角三。
6、数学 苏 (理),13.2 直接证明与间接证明,第十三章 推理与证明、算法、复数,基础知识自主学习,题型分类深度剖析,思想方法感悟提高,练出高分,1.直接证明 (1)综合法 定义:从 出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.,已知条件,思维过程:由因导果.,(2)分析法 定义:从 出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.,思维过程:执果索因.,问题的结论,2.间接证明,思考辨析,判断下面结论是否正确(请在。
7、10.1 分类加法计数原理 与分步乘法计数原理,数学 粤(理),第十章 计数原理,基础知识自主学习,m1m2mn,基础知识自主学习,基础知识自主学习,32,24,基础知识自主学习,12,夯 基 释 疑,返回,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,题型分类深度剖析,题型分类深度剖析,题型分类深度剖析,思维启迪,解析,思维升华,题型分类深度剖析,思维启迪,解析,思维升。
8、第2节 排列与组合,.理解排列、组合的概念 .理解排列数公式、组合数公式 .能利用公式解决一些简单的实际问题,整合主干知识,排列与组合,n、mN*且mn,质疑探究:如何区分某一问题是排列问题还是组合问题? 提示:看选出的元素与顺序是否有关,若与顺序有关,则是排列问题;若与顺序无关,则是组合问题,1用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为( ) A8 B24 C48 D120 答案:C,2已知5个工程队承建某项工程的5个不同的子项目,每个工程队承建一项,其中甲工程队不能承建3号子项目,则不同的承建方案共有( ) A4种 B16种 C64种 D96种。
9、第3节 二项式定理,会用二项式定理解决与二项展开式有关的简单问题,整合主干知识,2二项式系数的性质,质疑探究:二项式系数与项的系数相同吗?,1(x2)6的展开式中,x3的系数为( ) A40 B20 C80 D160 答案:D,2在(12x)n的展开式中,各项的二项式系数的和为64,则展开式共有________项( ) A5 B6 C7 D8 解析:各项二项式系数和为2n64,故n6, 所以该展开式共有7项故选C. 答案:C,解析:由题知,第6项为中间项,共有11项, 故n10,故选C. 答案:C,4若(x1)4a0a1xa2x2a3x3a4x4,则a0a2a4的值为________ 解析:令x1,a0a1a2a3a40. x1,a0a1a2a3a416. 。