2019-2020年初中生物竞赛辅导教程 第四章 生物的新陈代谢(知识概要).doc

上传人:tian****1990 文档编号:5446834 上传时间:2020-01-29 格式:DOC 页数:9 大小:32KB
返回 下载 相关 举报
2019-2020年初中生物竞赛辅导教程 第四章 生物的新陈代谢(知识概要).doc_第1页
第1页 / 共9页
2019-2020年初中生物竞赛辅导教程 第四章 生物的新陈代谢(知识概要).doc_第2页
第2页 / 共9页
2019-2020年初中生物竞赛辅导教程 第四章 生物的新陈代谢(知识概要).doc_第3页
第3页 / 共9页
点击查看更多>>
资源描述
第4章 2019-2020年初中生物竞赛辅导教程 第四章 生物的新陈代谢(知识概要)第一节 酶【知识概要】一、酶的概念1酶是生物催化剂酶是由生物体活细胞所产生的一类具有生物催化作用的有机物。生物体内的新陈代谢过程包含着许多复杂而有规律的物质变化和能量变化,其中的许多化学反应都是在酶的催化作用下进行的。2酶的化学本质是蛋白质酶具有一般蛋白质的理化性质。从酶的化学组成来看,有简单蛋白和复合蛋白两类。属于简单蛋白的酶,只含有蛋白质;属于复合蛋白的酶分子中,除了蛋白质外,还有非蛋白质的小分子物质,前者称酶蛋白,后者称辅助因子,可分为辅酶和辅基两类。近些年来发现,绝大多数酶是蛋白质,有的酶是RNA。二、酶催化作用的特点酶与一般催化剂一样,能降低化学反应所需的活化能,使反应速度加快,反应完成时,酶本身的化学性质并不发生变化。酶与一般非生物催化剂不同的特点是:1高效性;2专一性;3需要适宜的条件。三、酶催化作用的机理现在认为,酶进行催化作用时,首先要和底物结合,形成一中间络合物,它很容易转变为产物和酶;该过程可表示为:S(底物)E(酶)SE(中间络合物) E(酶)P(反应产物)。酶分子中直接与底物结合并与酶催化作用直接有关的部位称为“活性(力)中心。一般认为,酶的活性中心有两个功能部位:结合部位和催化部位。四、影响酶催化作用的因素影响酶催化作用的因素有底物浓度、温度、pH、酶浓度、激活剂和抑制剂等。第二节 植物的营养器官【知识概要】一、根根据发生的部位,根分成主根、侧根和不定根三种。植物地下部分所有根的总和叫做根系,分为直根系和须根系两种。从根的顶端到着生根毛的部分叫做根尖,它是根生长、分化、吸收最活跃的部位。从根尖的顶端起,依次分成根冠、分生区(生长点)、伸长区和成熟区(根毛区)四部分。根的初生结构由外向内分成表皮、皮层和维管柱(中柱)。皮层的最内层细胞叫做内皮层,这层细胞的径向壁和横壁上形成栓质化的带状加厚结构,叫做凯氏带,它具有加强控制根的物质转移的作用。维管柱由中柱鞘、初生木质部和初生韧皮部三部分组成。双子叶植物的根可以进行次生生长,由形成层细胞进行细胞分裂,向内形成次生木质部,向外形成次生韧皮部。根的生理功能是吸收、支持、合成和贮藏,有些植物的根还有营养繁殖的作用。二、茎茎的形态特征是有节和节间,有芽,落叶后节上有叶痕。茎因生长习性的不同,可以分为直立茎、攀援茎、缠绕茎和匍匐茎四类。茎的主干由种子的胚芽发育而成,侧枝由主干上的芽发育而成。因此,芽是一个枝条的雏型,将植物的叶芽纵切,从上到下依次为生长点、叶原基、幼叶、腋芽原基。双子叶植物茎的初生结构分为表皮、皮层和维管柱。维管柱由维管束、髓和髓射线三部分组成。维管束是初生韧皮部、形成层和初生木质部组成的束状结构。双子叶植物茎的维管束常排列成筒状。茎的次生结构是由形成层的活动而加粗的部分。由于形成层的活动受四季气候影响而在多年生木质部横切面上出现年轮。一般单子叶植物的茎只有初生结构,由表皮、维管束和薄壁组织组成。表皮下有机械组织,起支持作用,其细胞常含叶绿体。维管束是分散的,有的植物茎中空成髓腔。茎的生理功能主要是运输水分、无机盐类和有机营养物质,同时又能支持技、叶、花和果实展向空中。此外还有贮藏和营养繁殖的作用。三、叶植物的叶一般由叶片、叶柄和托叶三部分组成。叶片内分布着叶脉,叶脉有网状脉和平行脉之分。叶柄有支持和输导作用。叶片的结构通常分三部分:表皮、叶肉和叶脉。表在分为上表皮和下表皮。表皮细胞之间有许多气孔,由两个保卫细胞围成,保卫细胞控制着气孔的开闭。气孔是叶蒸腾水分和气体进出的通道。叶肉由含许多叶绿体的薄壁细胞组成,分为栅栏和海绵组织,大中型叶脉由维管束和机械组织构成,木质部在上,韧皮部在下。叶脉越细,结构越简单。四、根、茎、叶的变态根的变态包括贮藏根(有肉质直根、块根)、气生根(有支柱根、呼吸根、攀援根等)、寄生根(吸器);茎的变态包括地下茎的变态(有块茎、鳞茎、球茎、根状茎等)、地上茎的变态(有茎卷须、枝刺、叶状枝、肉质茎等);叶的变态,有苞叶、叶卷须、鳞叶、叶刺、捕虫叶等。第三节 植物的光合作用【知识概要】一、光合作用的概念及其重要意义光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。光合作用的重要意义是把无机物转变成有机物,转化并储存太阳能,使大气中的氧和二氧化碳的含量相对稳定等。总之,光合作用是地球上几乎一切生物的生存、繁荣和发展的根本源泉。二、光合作用的场所和光合色素叶片是植物进行光合作用的主要器官,叶绿体是光合作用的重要细胞器。叶绿体的类囊体薄膜上分布有光合色素,在类囊体膜和间质中存在许多种光合作用需要的酶。叶绿体中的色素有三类:叶绿素,主要是叶绿素a和叶绿素b。绝大多数叶绿素a分子和全部叶绿素b分子具有收集光能的作用,少数不同状态的叶绿素a分子有将光能转换为电能的作用。类胡萝卜素,包括胡萝卜素和叶黄素。它们除有收集光能的作用之外,还有防止光照伤害叶绿素的功能。藻胆素,是藻类进行光合作用的主要色素。三、光合作用的过程光合作用的总反应式概括为:CO2H2O (CH2O)O21光反应阶段是由光引起的光化反应,在叶绿体的类囊体上进行,包括两个步骤:光能的吸收、传递和转换,是通过原初反应完成的。这个过程使光能转换为电能。电能转换为活跃化学能过程,是通过电子传达和光合磷酸化完成的。结果使电能转变成的活跃化学能贮存于ATP和NADPH2中。2暗反应阶段是由若干酶所催化的化学反应,不需要光,在叶绿体的间质中进行。暗反应是活跃的化学能转变为稳定化学能的过程,通过碳同化来完成。碳同化的途径有卡尔文循环(C3途径)、C4途径和景天科酸代谢(CAM)。卡尔文循环是碳同化的主要形式,大体分三个阶段:羧化阶段(CO2的固定)。还原阶段。更新阶段。根据碳同化的最初光合产物的不同,把高等植物分为C3植物和C4植物两类。四、外界条件对光合作用的影响影响光合作用的外界条件主要有光照强度、二氧化碳浓度、温度和水含量等。第四节 植物对水分的吸收和利用【知识概要】一、植物细胞对水分的吸收细胞吸水的主要方式是渗透吸水。细胞的渗透吸水取决于水势。纯水的水势最高,定为零值,则其他溶液的水势就成负值,溶液越浓,水势越低,水势总是从水势高的系统通过半透膜向水势低的系统移动。成熟的植物细胞是一个渗透系统,细胞的水势表示为:水势渗透势压力势衬质势当细胞处于不同浓度的溶液中时,在细胞内外就会有水势差,从而发生渗透作用。可以用“植物细胞的质壁分离和复原”实验来证明植物细胞的渗透作用。植物细胞在形成液泡之前依靠吸胀作用吸水。吸胀作用是亲水胶体吸水膨胀的现象。二、植物根系对水分的吸收根系吸水有两种动力:(l)根压:即根系的生理活动使液流从根部上升的动力。从土壤到根内通常存在一个由高到低的水势梯度。使水分由土壤溶液进入根的表皮、皮层,进而到达木质部导管。此外水分还可以通过成熟区表皮细胞壁以及根内层层细胞之间的间隙向里渗入,最终也达到导管。(2)蒸腾拉力:这种吸水是依靠蒸腾失水而产生的蒸腾拉力,由枝叶形成的力量使到根部而引起的被动吸水。影响根系吸水的外界条件有土壤中可用水分、土壤通气状况、土壤温度、土壤溶液浓度等。三、蒸腾作用水分以气体状态从植物体表面(主要是叶)散失到体外的现象叫做蒸腾作用。蒸腾作用对植物体有重要生理意义。蒸腾作用是植物对水分吸收和运输的主要动力,蒸腾作用能促进矿质养料在体内的运输,蒸腾作用能降低叶片的温度。植物成长以后,蒸腾作用主要通过叶面进行。叶面蒸腾分为角质蒸腾和气孔蒸腾,后者是最主要形式。外界条件影响蒸腾作用的最主要因素是光照,此外还有空气相对湿度、温度、风等。生产实践上,一方面要促使根系生长健壮,增强吸水能力;另一方面要减少蒸腾,这在干旱环境中更为重要。四、植物体内水分的运输水分被根系吸收进入木质部的导管和管胞后,沿着木质部向上运输到茎或叶的木质部,而到达植物体的各部。水分子在导管内上有蒸腾拉力,下有根压,中间有水分子本身的内聚力,使水分形成连续的水柱源源而上。第五节 植物的矿质营养【知识概要】一、植物必需的矿质元素及其主要生理作用植物生长发育必需的元素有C、H、O、N、P、K、S、Ca、Mg、Fe、Mn、B、Zn、Cu、Mo和Cl等16种,除C、H、O以外的13种元素主要由根系从土壤中吸收,叫做矿质元素。植物对前9种元素需要量相对较大,属于大量元素;对后7种元素需要量极微,属于微量元素。矿质元素的生理作用:一是细胞结构物质的组成成分;二是植物生命活动的调节者,参与酶的活动;三是起电化学作用,即离子浓度的平衡。胶体的稳定和电荷中和等。二、植物体对矿质元素的吸收根吸收土壤中矿质离子的过程,首先通过交换吸附把离子吸附在根部表皮细胞表面;然后靠扩散作用,通过非质体运输进入皮层内部,同时,也靠呼吸供给的能量做功,通过共质体主动运输进入根细胞内部;最后进入导管。根吸收矿质元素的主要特点表现在:根吸收矿质元素和吸收水分是相对独立的,根对离子的吸收有选择性。三、生物固氮某些微生物把空气中的游离氮固定转化为含氮化合物的过程称为生物固氮。固氮微生物依靠固氮酶,消耗能量,把氮还原成氨,供植物利用。其总反应式为N28e8H16ATP 2NH3H216ADP16Pi四、矿质元素在植物体内的运输和利用吸收到根内的矿质元素,多数同化为有机物,有一些仍呈离子状态。它们进入导管后,随蒸腾作用流经木质部一起上升到地上各部,有些物质可从木质部横向运输到韧皮部。在植物体内,参与循环的元素大多分布于代谢较旺盛的幼嫩部分,Ca、Fe等不参与循环的矿质元素在越老的器官含量越多。第六节 高等动物和人体内的主要代谢系统【知识概要】一、消化系统1消化系统的组成高等动物和人体的消化系统分为消化管和消化腺两部分。消化管一般分为口腔、咽、食道、胃、小肠(十二指肠、空肠和回肠)、大肠(盲肠、结肠和直肠)和肛门。小肠是消化和吸收的主要场所,是消化管中最长的部分。消化腺分为两类,一类是位于消化道外的大消化腺,如唾液腺、肝、胰;一类是位于消化道壁、粘膜层的大量小消化腺,如胃腺、肠腺。消化腺分泌的消化液里含多种消化酶。肝脏是体内最大的消化腺,具有分泌胆汁、物质代谢、参与血细胞生成和破坏、解毒、产生体热等作用。2食物的营养成分组成食物的营养成分分为糖类、脂类、蛋白质、维生素、无机盐和水六大类。其中蛋白质、水、脂类等是构成机体的重要原料;糖类、脂类、蛋白质等有机物是机体生命活动的能源物质;维生素和无机盐对生命活动起调节作用。3食物的消化消化是指食物通过消化管的运动和其在消化液的作用下被分解为可吸收成分的过程。消化的方式有细胞内消化和细胞外消化两种。消化的过程分为机械性消化和化学性消化。机械性消化是通过牙齿的咀嚼和胃肠的蠕动,将食物磨碎、搅拌和消化液混合、输送排出残渣等一系列消化管的运动机能。化学性消化是在生物体内把蛋白质、脂类和糖类等高分子物质分解成结构简单、能被吸收的小分子物质的过程,它是依靠消化液中各种消化酶来完成的。4营养物质的吸收各种营养物质的消化产物以及水、无机盐和维生素等,通过消化管壁粘膜上皮细胞进入血液和淋巴的过程叫做吸收。小肠是吸收的主要部位,胃只能吸收少量酒精和水分,大脑能吸收水、无机盐和部分维生素,小肠上皮细胞吸收营养物质时,水、甘油、胆固醇等是通过渗透、扩散等作用来吸收的,葡萄糖、氨基酸、无机盐离子等是通过主动运输来吸收的。甘油和脂肪酸被吸收到小肠上皮细胞后重新合成脂肪、再外包卵磷脂和蛋白质形成的膜,形成乳糜微粒。脂肪的主要转运途径是淋巴,经淋巴转入血液,其余营养物质的转运途径是通过血液循环。二、循环系统1循环系统的组成循环系统包括心血管系统和淋巴系统两部分。血液循环是在由心脏和血管组成的密闭的心血管系统中进行的。其中,心脏是血液循环的动力器官,血管是血液循环的管道,瓣膜是使血液向一定方向流动的特殊结构。2血液循环途径血液循环分为体循环和肺循环。体循环和肺循环的大体途径归纳如下。3血液血液由血浆和血细胞组成。血浆是血液的液体部分,有运输血细胞、营养物质和代谢产物的作用。血细胞包括红细胞、白细胞和血小板三种。红细胞有运输O2和CO2的功能,白细胞起防御和免疫作用,血小板能促进止血和加速凝血。4心脏心脏为一中空的肌性器官。哺乳类和人的心脏有左、右心房和左、右心室四腔室,由中隔分为不相通的两半。同侧心房和心室之间有房室口相通,左房室四有二尖瓣,右房室口有三尖瓣,它们都朝心室方向开放,使血液只能从心房流入心室。右心房与上、下腔静脉相连通,右心室与肺动脉相连通,左心房与四条肺静脉相连通,左心室与主动脉相连通。在肺动脉和主动脉起始部位的里面,各有三个半月形的瓣膜,分别称为肺动脉辩和主动脉瓣,它们都朝动脉方向开启,能阻止血液由动脉返回心室。心脏有一套传导系统,能自动地、节律地发生兴奋。心脏有心动周期,心搏频率和心输出量等生理指标。5血管根据结构、功能和血流方向不同,血管分为动脉、静脉和毛细血管。动脉是把血液从心脏输送到身体各部分去的血管,动脉的管壁厚。弹性大、管内血流的速度快,心脏搏动所引起的主动脉管壁发生搏动,这搏动沿动脉管壁向外周传递,就是脉搏。静脉是把血液从身体各部分送回心脏的血管,与伴行的动脉相比,静脉管壁薄,弹性小,管腔大,管内血流的速度慢。四肢静脉的内表面通常有防止血液倒流的静脉瓣。毛细血管是连通于最小的动脉与最小的静脉之间的血管,毛细血管数量大,分布广,管壁由一层扁平细胞构成,管内血流的速度极慢,是血液和组织液进行物质交换的部位。6淋巴系统淋巴系统是心血管系统的辅助部分。它由淋巴管、淋巴结、脾等组成。淋巴循环是未被毛细血管吸收的、可流动的少量组织液进入组织间隙的毛细淋巴管成为淋巴,逐级汇合进入较大的淋巴管,通过淋巴结,最后经左侧胸导管和右侧淋巴管进入左、右锁骨下静脉的过程。7循环系统的作用循环系统能运输代谢原料和代谢废物,保证机体新陈代谢的进行;把内分泌腺分泌的激素运输到机体各部,执行体液调节作用;运输白细胞和淋巴细胞,有免疫功能;维持机体内环境的恒定,为生命活动提供最适宜的条件。三、呼吸系统1呼吸系统的组成和结构呼吸系统由输送空气的呼吸道和进行气体交换的肺组成。呼吸道包括鼻、咽、喉、气管和支气管,通常把鼻、咽、喉划为上呼吸道,气管、支气管划为下呼吸道。鼻腔分成嗅部和呼吸部;喉是呼吸道的一部分,也是发声器官;气管反复分支为各级支气管和细支气管,再由终末细支气管分支为呼吸性细支气管,后者再经分支连接肺泡管、肺泡囊和肺泡。肺是呼吸系统的主要器官,是气体交换的场所,肺内最小的呼吸单位是肺泡,肺泡由单层上皮细胞构成,被毛细血管网包绕,保证了肺泡内充分的气体交换,肺泡外有丰富的弹性纤维,有助于吸气后肺泡的弹性回缩。2呼吸的过程与原理呼吸过程包括三个连续的环节:(1)外呼吸(肺呼吸),指外界环境的气体在肺部和体内的气体交换,包括肺的通气和肺泡内的气体交换;(2)气体在血液中的运输,氧由肺经过血液循环运送到组织,同时二氧化碳由组织运输到肺;(3)内呼吸(组织呼吸),指血液与组织细胞之间的气体交换。肺的通气与呼吸运动密切相关。胸部有节律地扩大与缩小称为呼吸运动。它包括吸气和呼气两个过程。呼吸运动是由呼吸肌的舒缩活动引起的,人体主要的呼吸肌有隔肌和肋间肌。由于呼吸运动形成了肺内气压与大气压之间的压力差,才使气体能够进出肺泡,实现肺的通气。肺泡内的气体交换和组织里的气体交换都通过扩散作用来实现。气体交换的动力是气体压力差,肺泡气、动脉血、静脉血液、组织内的氧气分压和二氧化碳分压各不相同,彼此存在分压差。于是气体就从分压高处向分压低处扩散。总之,肺循环中毛细血管的血液不断从肺泡获得氧气,放出二氧化碳;而体循环中毛细血管的血液则供给组织氧气和接受来自组织的二氧化碳,从而不断满足细胞新陈代谢的需要。四、泌尿系统1排泄的概念与途径人和动物把新陈代谢的最终产物,多余的水和无机盐,以及其他机体不需要或对机体有害的物质排出体外的过程,叫做排泄。人体的主要排泄器官是肾脏,此外还有皮肤的汗腺、肺和大肠。尿在肾脏里形成,经输尿管到达贮尿的膀就,最后由尿道排出体外。肾、输尿管、膀胱和尿道组成泌尿系统。2肾脏的结构肾脏是泌尿系统的主要器官。从肾脏的纵剖面看,肾实质可以分为皮质和髓质两部分。髓质与漏斗状的肾盂相连通。每个肾约由一百多万个肾单位以及集合管和少量结缔组织组成。肾单位是肾脏的结构和功能的基本单位,肾单位的组成与分布归纳如下。肾单位包括肾小体、肾小管;肾小体位于皮质,由肾小球、肾小囊组成;肾小管位于皮质和髓质,由近曲小管、髓袢细段、远曲小管组成。肾小管最终通入集合管,后者伸入肾盂,再由肾盂连接输尿管。3尿的形成尿是由流经肾单位的血液形成的,它包括三个步骤:(1)肾小球的滤过作用。血液流经肾小球时,血液里除血细胞和大分子蛋白质外,其余成分都能够滤过到肾小囊腔中,生成原尿。(2)肾小管和集合管的重吸收作用。原尿中的葡萄糖、氨基酸、小分子蛋白质等营养物质几乎被全部主动重吸收,水和Na、Cl、Ca2等大部分被重吸收,少量尿素也随之被重吸收,肌酐则完全不被重吸收。(3)肾小管和集合管的分泌和排泄作用。肾小管上皮细胞可以把代谢产物的某些物质如H、NH3等分泌到管腔中,或把血液中某些物质转运到肾小管管腔中去。通过上述三个过程,最终形成终尿。五、内环境的稳态人体内含有的大量液体,称为体液。体液分为细胞内液和细胞外液。人体内的细胞外液构成了人体内细胞生活的液体环境,这个液体环境叫做人体的内环境。人体内的细胞可以通过内环境,与外界环境之间间接地进行物质交换。循环、消化、呼吸和泌尿系统与体内细胞的物质交换有密切的关系,神经和内分泌系统则起着重要的调节作用。生理学家把正常机体在神经和体液调节下,通过各个器官、系统的协调活动,共同维持内环境的相对稳定状态,叫做内环境稳态。内环境稳态是机体进行正常生命活动的必要条件。第七节 人和动物体内有机物的代谢【知识概要】一、糖类代谢糖类是动物和人生命活动的主要能源。食物中的糖类主要是淀粉。淀粉经过消化分解成葡萄糖,被小肠吸收进人血液循环,运输到全身各个器官和组织中。糖类在体内主要有三个变化:氧化分解、合成糖元和转变成脂肪等。1氧化分解氧气供给不足时,葡萄糖通过酵解生成乳酸;在充分供给氧气的条件下,葡萄糖经过三核酸循环和呼吸链等途径,彻底分解成二氧化碳和水。葡萄糖的有氧氧化是细胞内产生能量最主要的方式,它比无氧酵解过程释放的能量多,但后者为组织细胞在氧气供应不足时提供机体急需的能量。2合成糖元血液中的葡萄糖除了供细胞利用外,多余的部分在肝脏或肌肉等组织细胞中合成糖元贮备起来。肝糖元是能量的暂时贮备,当血糖含量降低时,又可以分解成葡萄糖释放到血糖中,使血糖含量得以维持在相对稳定的水平。3转变成脂肪若经上述变化后,还有多余的葡萄糖,则可以转变成脂肪,作为能源物质贮备起来。另外,葡萄糖代谢的中间产物如丙酮酸、a酮戊二酸、草酸乙酸经转氨作用可以产生相应的丙氨酸、谷氨酸、天冬氨酸。二、脂类代谢食物中的脂类主要是脂肪,还有少量的磷脂和胆固醇。脂肪消化的产物是甘油和脂肪酸,它们被吸收到小肠上皮细胞以后,大部分重新合成脂肪,经淋巴循环进入血液循环被运送到脂肪组织贮存起来。脂肪也可以再水解成甘油和脂肪酸,甘油经转化后,通过酵解途径进入三羧酸循环而彻底氧化;脂肪酸经氧化作用逐步氧化,释放出的乙酰辅酶A通过三核酸循环彻底氧化。所以脂肪的主要功能是贮存和供给能量。此外,脂肪还有缓冲机械冲击,保护和固定内脏器官,以及保持体温的作用。磷脂主要参与构成机体的组织,也可以氧化分解,释放能量,或转变成脂肪。胆固醇主要是构成机体的组织,也可以转变成一些重要的化合物,如某些类固醇激素和胆汁酸等。三、蛋白质代谢食物中的蛋白质在消化道内被消化分解成氨基酸,氨基酸被小肠吸收后,通过血液循环输送到全身各器官组织,主要发生四方面变化1合成各种组织蛋白质,如血红蛋白、肌球蛋白、肌动蛋白等。2合成具有一定生理功能的特殊蛋白质,如蛋白质类激素等。3氨基转换作用,也称转氨基作用在转氨酶作用下,氨基酸上的氨基转移到a一酮酸上,使后者变成相应的氨基酸,原来的氨基酸失去氨基变为相应的酮酸。可用下式表示: 氨基酸 酮酸 酮酸 氨基酸 在人和动物体内能够合成的氨基酸,称为非必需氨基酸,如丙氨酸、甘氨酸、谷氨酸等十几种。不能在人和动物体的细胞内合成,必须从食物中获得的氨基酸,称为必需氨基酸,人体的必需氨基酸有8种:甲硫氨酸、赖氨酸、色氨酸、亮氨酸、苯丙氨酸、苏氨酸、缬氨酸、异亮氨酸。4脱氨基作用氨基酸在氨基酸氧化酶的作用下,进行氧化脱氨作用生成酮酸(不含氮部分)和氨(含氮部分)。氨在肝脏中经鸟氨酸循环转变成尿素而排出体外,酮酸经三核酸循环氧化分解为二氧化碳和水,释放能量,也可以合成糖类和脂肪。四、三大有机物代谢的关系糖类可以转变成非必需氨基酸,氨基酸都可以转变成糖类和脂肪,糖类和脂肪可以互相转化。关于糖类、蛋白质和脂肪在动物体内的转化关系可以概括如下:表示精尖转弯成非必需氨某酸第八节 生物的呼吸作用【知识概要】一、呼吸作用的概念、类型和生理意义生物的呼吸包括外呼吸和内呼吸两个步骤。外呼吸是指机体与外界环境之间的气体交换。动物通过呼吸器官、植物通过叶的气孔与外界进行气体交换。内呼吸是指细胞的呼吸,即呼吸作用。生物体内的有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳和水或其他产物,并且释放出能量的过程叫做呼吸作用。生物的呼吸作用包括有氧呼吸和无氧呼吸两种类型,有氧呼吸是由无氧呼吸进化而来的。有氧呼吸是高等动植物进行呼吸作用的主要形式。呼吸作用的生理意义主要表现在:呼吸作用为生物体的生命活动提供能量,还为体内其他化合物的合成提供原料。二、呼吸作用的过程1有氧呼吸的过程有氧呼吸最常利用的物质是葡萄糖。有氧呼吸的反应式:C6H12O66O2 6CO26H2O能量 有氧呼吸的全过程分为三个阶段:(1)糖酵解,葡萄糖在无氧条件下分解为丙酮酸的过程。该阶段在细胞质基质中进行,可概括如下:C6H12O62NAD2ADP2Pi 2CH3COCOOH2NADH22ATP(2)三羧酸循环,在有氧条件丙酮酸彻底分解的过程。该阶段在线粒体中进行。三羧酸循环是糖、脂肪、蛋白质和核酸及其他物质的共同代谢过程。总式可概括为:(3)呼吸链和氧化磷酸化(生物氧化),前两阶段脱下的氢经呼吸链的一系列电子传递体和氢传递体而逐步氧化,最后氢被氧接受,形成水。同时,呼吸链上氧化作用释放的能量和ADP的磷酸化作用偶联起来,形成大量ATP。该阶段也在线粒体中进行,和概括为:2无氧呼吸的过程细胞无氧呼吸的场所是细胞质基质。无氧呼吸全过程分为两个阶段:(1)与有氧呼吸的第一阶段相同。(2)在缺氧条件下,丙酮酸在不同酶的催化作用下,或脱羧形成乙醛,再被还原成乙醇;或直接被还原生成乳酸。总反应式为:C6H12O62ADP2Pi2C2H5OH2CO22ATPC6H12O62ADP2Pi2C3H6O32ATP 高等植物无氧呼吸的主要形式是产生酒精,酵母菌和其他一些微生物能进行酒精发酵。马铃薯块茎、甜菜块根、胡萝卜和玉米胚的无氧呼吸也可以产生乳酸,乳酸细菌能进行乳酸发酵。高等动物和人体剧烈运动时,骨骼肌组织出现无氧呼吸,产生乳酸。三、影响呼吸作用的因素一般来说,凡是生长迅速的植物种类、器官组织和细胞,其呼吸均较旺盛,如幼根动叶的呼吸强于老根老叶,生殖器官的呼吸强于营养器官。影响呼吸作用的外界条件主要有温度、氧气和二氧化碳含量。四、呼吸作用的原理在生产实践中的应用由于呼吸是新陈代谢的中心,在栽培过程中,应使呼吸过程正常进行,还要注意调节与光合作用的关系。由于呼吸作用消耗有机物和放热,所以,贮藏粮食和水果蔬菜时,又应该控制一定条件,降低呼吸作用,以利安全贮存。第九节 微生物的新陈代谢【知识概要】一、微生物的营养类型根据微生物所需要的能源、碳源的不同,可分为四大类。见下表。微生物的营养类型比较营养类型能源碳源供氢体实例光能自养微生物光能CO2无机物藻类、红硫细菌、绿硫细菌光能异养做生物光能CO2有机化合物红螺细菌化能自养微生物无机物氧化产生的化学能CO2或碳酸盐硫细菌、硝化细菌、氢细菌、铁细菌化能异养微生物有机物氧化产生的化学能主要是有机物,来自有机质(腐生)或有机体(寄生)绝大多数细菌、放线菌,几乎全部的真菌二、微生物的呼吸类型微生物有不同的产能代谢途径。以分子氧作为最终电子受体的生物氧化过程,称为有氧呼吸;以有机物(基质未彻底氧化的产物如丙酮酸)作为最终电子受体的,称为发酵;以无机氧化物(如NO3、SO42、CO2)作为最终电子受体的,称为无氧呼吸。据此,微生物分为不同呼吸类型,见下表。微生物的呼吸类型比较呼吸类型生活环境生物氧化方式实例好氧性微生物有氧有氧呼吸很多常见的细菌、放线菌、真菌厌氧性微生物缺氧无氧呼吸或发酵梭状芽孢杆菌、产甲烷杆菌,乳酸菌等兼性厌氧微生物有氧缺氧均可有氧时,进行有氧呼吸;缺氧时,进行发酵或无氧呼吸酵母菌,硝酸盐还原细菌等三、微生物的发酵类型1乙醇发酵如酵母菌,在缺氧条件下将葡萄糖经糖酵解途径分解成丙酮酸,丙酮酸脱羧生成乙醛,乙醛被还原成乙醇。工业上用于酿酒和生产酒精。2乳酸发酵进行乳酸发酵的主要是细菌。它们利用糖经糖酵解途径生成丙酮酸,丙酮酸还原产生乳酸。用于制泡菜、青贮饲料及乳酪、酸牛奶等乳酸发酵制品。3丙酸发酵葡萄糖经糖酵解途径生成的丙酮酸可羧化形成草酸乙酸,后者还原成琥珀酸,再脱羧产生丙酸。丙酸细菌多见于动物肠道及乳制品中。4混合酸发酵是大多数肠杆菌的特征,如大肠杆菌的发酵产物中有甲酸、乙酸、乳酸、琥珀酸、二氧化碳和氢气等。5丁酸发酵如专营厌氧的梭状芽抱杆菌,丁酸是其特征性的发酵产物。用于工业上产生丙酮、丁醇。四、生物新陈代谢的基本类型新陈代谢是生物体最基本的生命活动过程,是活细胞中全部化学反应的总称。它包括同化作用和异化作用两方面。按照自然界中生物体同化作用和异化作用方式的不同,新陈代谢的基本类型可分为以下几种类型。同化作用类型有自养型和异养型两种。自养型就是摄取无机物转变为自身组成物质并储存能量的同化作用类型,包括光能自养型、化能自养型;异养型就是摄取现成有机物转变为自身组成物质并储存能量的同化作用类型。异化作用类型有需氧型(有氧呼吸型)和厌氧型(无氧呼吸型)。需氧型即要摄取氧,彻底氧化分解有机物并释放大量能量的异化作用类型;厌氧型即在缺氧条件下,将有机物不彻底分解并释放少量能量的异化作用类型。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!