平均数、众数、中位数 方差、标准差。平均数 中位数 众数。一组数据x1。一组数据的方差越大。一组数据的方差越小。则这组新数据的中位数为_____. 【思路点拨】根据两组数据的平均数都是。平均数 中位数 众 数。2、举例说明平均数、中位数、众数的意义。平均数是一组数据的。平均数的大小与一组数据里的每个数据都有关。
数据的分析复习课件Tag内容描述:
1、第八章 统计与概率 第33课时 数据的分析,第一部分 考点研究,考点精讲,数据的分析,平均数、众数、中位数 方差、标准差,平均数 中位数 众数,方差 标准差 方差的意义,加权平均数,权,中间位置的数,偶数,平均数,最多,方差,一组数据x1,x2,xn与它们的平均数x的差的平方的平均数,即,标准 差,方差的算术平方根,即,标准差的单位与原始数据的单位相同,均可用来描述一组数据的离散程度,方差的意义:一组数据的方差越大,说明这组数据的离散程度越大;一组数据的方差越小,说明这组数据的离散程度越小,重难点突破,众数和中位数的计算(高频),例1(2。
2、小结与复习,第20章 数据的分析,教学任务分析,完 成 本 章 的 知 识 结 构 图,数据的代表,数据的波动,平均数 中位数 众数,极差 方差,用 样 本 诂 计 总 体,用样本平均数诂 计总体平均数,用样本方差诂 计总体方差,数据的代表,知识构架,数据的波动,平均数 中位数 众 数,极差 方差,样本估计总体,2、举例说明平均数、中位数、众数的意义。,平均数是一组数据的“重心”,是度量一组数据的波动大小的基准。平均数的大小与一组数据里的每个数据都有关,其中任何数据的变化都会引起平均数的变化,如果已知数据的中位数,那么可以知道小于或大于这个。
3、 数 据 的 分 析复 习 课 知识网络:知 识 点 的回 顾数据的代表数据的波动平均数中位数众 数极 差方 差用样本估计总体用样本平均数估计总体平均数用样本方差估计总体方差 本 单 元 知 识 点1 用 样 本 估 计 总 体 是 统 计。