高考数学(第01期)小题精练系列 专题12 导数 理(含解析)

上传人:san****019 文档编号:11854133 上传时间:2020-05-03 格式:DOC 页数:6 大小:425.50KB
返回 下载 相关 举报
高考数学(第01期)小题精练系列 专题12 导数 理(含解析)_第1页
第1页 / 共6页
高考数学(第01期)小题精练系列 专题12 导数 理(含解析)_第2页
第2页 / 共6页
高考数学(第01期)小题精练系列 专题12 导数 理(含解析)_第3页
第3页 / 共6页
点击查看更多>>
资源描述
专题12 导数1.已知函数的导函数是,且,则实数的值为( )A B C D1【答案】B 【解析】试题分析:由可得,由可得,解之得.故选B. 考点:1、对数函数的求导法则;2、复合函数的求导法则.2.已知定义在上的奇函数满足:当时,若不等式对任意实数恒成立,则实数的取值范围是( )A B C D【答案】A【解析】选A.考点:1.导数的最值应用;2.奇函数的性质;3.分离参数的方法.3.已知函数(为自然对数的底),则的大致图象是( )【答案】C【解析】试题分析:由题意得,求出导函数,利用导函数判断函数的单调性,求出交点的横坐标的范围,然后根据范围判断函数的单调性得出选项,故选C考点:1.导函数的应用;2.数形结合.4.已知函数,若恒成立,则的取值范围是( )A B C D【答案】D【解析】考点:1.函数与方程的应用;2.导数的综合应用.5.点是曲线上任意一点,则点到直线的最小距离为( )A B C D2【答案】B【解析】试题分析:点是曲线上任意一点,当过点到直线平行时,点到直线的距离最小,直线的斜率等于,令的导数或(舍去),所以曲线上和直线平行的切线经过的切点坐标,点到直线的距离等于,故选B.考点:点到直线的距离公式、导数的几何意义.6.设函数的导函数为,且,则下列不等式成立的是( )A BC D【答案】B【解析】考点:利用导数研究函数的单调性及其应用.7.已知点为曲线上一点,曲线在点处的切线交曲线于点(异于点),若直线的斜率为,曲线在点处的切线的斜率为,则的值为( )A B C D【答案】C【解析】试题分析:设,由,则其导数为,可得切线,联立曲线,解得或,由题意可得的横坐标为,可得切线的斜率,由,即,故选C考点:利用导数研究曲线在某点点处的切线方程8.定义在上的函数满足,则不等式(其中为自然对数的底数)的解集为( )ABCD【答案】A【解析】试题分析:设,则,因为,所以,所以,所以是单调递增函数,因为,所以,又因为,即,所以,故选A考点:利用导数研究函数的单调性9.若实数,满足,则的最小值为( )ABCD【答案】D【解析】试题分析:因为实数满足,所以,设考点:利用导数研究曲线在某点的切线方程及其应用10.设曲线(为自然对数的底数)上任意一点处的切线为,总存在曲线上某点处的切线,使得,则实数的取值范围为( )A B C D【答案】D【解析】试题分析:由,得,因为,所以,由,得,又,所以,要使过曲线上任意一点的切线,总存在过曲线上一点处的切线,使得,则,解得,故选D考点:利用导数研究曲线在某点的切线方程11.已知定义在上的函数为其导数,且恒成立,则( )A BC D【答案】C【解析】试题分析:构造函数,单调递增,故,故选C. 考点:函数导数与不等式.12.函数是定义在上的可导函数,其导函数为且有,则不等式的解集为( )A B C D【答案】A【解析】考点:函数导数与不等式、构造函数
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!