另一种是点坐标变换在坐标轴上或象限内循环递推变化解题方法如下。(2)根据图形的变换规律分别求出第1个点、第2个点、第3个点、第4个点的坐标。矩形、菱形与正方形。互相平分且相等。2菱形的概念、性质及判定。3.正方形的概念、性质及判定。1一个防范 在判定矩形、菱形或正方形时。也叫做 因式分解。
中考数学第一轮知识点习题复习Tag内容描述:
1、山西省,数学,第一章数与式,二次根式及其运算,非负数,a(a0),a(a0),0(a0),a(a0),4最简二次根式 运算结果中的二次根式,一般都要化成最简二次根式最简二次根式,需满足两个条件: (1)被开方数不含分母; (2)被开方数中不含开得尽方的因数或因式,D,D,B,x4,x2且x0,x1且x2,D,B,5,5,A,C,C,C,C。
2、山西省,数学,专题二选择、填空题重难点突破,图形规律探索,(一)求坐标 对于求坐标的图形规律探索题,根据图形点坐标的变换特点可知这类题有两种考查形式:一种是点坐标变换在同一象限递推变化;另一种是点坐标变换在坐标轴上或象限内循环递推变化解题方法如下: (1)根据图形点坐标的变换特点判断出属于哪一种; (2)根据图形的变换规律分别求出第1个点、第2个点、第3个点、第4个点的坐标,再看每一个点坐标与对应。
3、矩形、菱形与正方形,第五章图形的性质(一),1矩形的概念、性质及判定,直角,互相平分且相等,2,三个角,相等,2菱形的概念、性质及判定,相等,互相垂直平分,一组对角,中心,2,相等,互相垂直,3.正方形的概念、性质及判定,垂直平分,邻边,矩形,菱形,对角线,1一个防范 在判定矩形、菱形或正方形时,要明确是在“四边形”还是在“平行四边形”的基础之上来求证的要熟悉各判定定理的联系和区别,解题时要认真审。
4、数学 第一章 数与式 整式及其运算 1 单项式: 由 __________或 ____________相乘组成的代数式 叫做单项式 , 所有字母指数的和叫做 ______________, 数字因数 叫做 ________________单独的一个数或一个字母也是单项式 2 多项式: 由几个 ___________组成的代数式叫做多项式 , 多 项式里次数最高的项的次数叫做这个 _________。
5、山西省 数学 第一章 数与式 因式分解 1 因式分解 把一个多项式化成几个 ______积的形式叫做分解因式 , 也叫做 因式分解 , 因式分解与 ___________是互逆变形 2 基本方法 (1)提取公因式法: ma mb mc __________ (2)公式法: 运用平方差公式: a2 b2 __________; 运用完全平方公式: a2 2ab b2 ________; (3)x2。
6、锐角三角函数和解直角三角形 第五章 图形的性质 (一 ) 1 锐角三角函数的意义 : Rt ABC中 , 设 C 90 , 为 Rt ABC的一个锐角 , 则: 的正弦 sin ____________; 的余弦 cos ____________; 的正切 tan ____________ 的对边 斜边 的邻边 斜边 的对边 的邻边 2 30 , 45 , 60 的三角函数值 如下表。
7、山西省 数学 第一章 数与式 分式及其运算 ( 是整式 , 且 B中含有字母 , B0) 1 分式的基本概念 ( 1) 形如 __ ____ ____ ____ _____ ____ _____ __ ______ __ 的式子叫分式; ( 2) 当 __ ___ __ 时 , 分式 A B 有意义;当 __ _ ___ __ 时 , 分式 A B 无意义;当 __ ____ _____ ___。
8、线段、角、相交线和平行线 第五章 图形的性质 (一 ) 1 线段沿着一个方向无限延长就成为 ________;线段向两方无限延长 就成为 ________;线段是直线上两点间的部分 , 射线是直线上某一点一 旁的部分 2 直线的基本性质: ____________________; 线段的基本性质: ___________________________; 连接两点的 _____________。
9、山 西 省数 学选择填空题重难点突破图形 折 叠问题 对于图形折叠问题,常考类型包括:求线段长,求角度大小,求一个角的三角函数值等解答这类问题,需掌握以下知识:1折叠的性质:位于折痕两侧的图形关于折痕成轴对称;折叠前后的两部分图形全等,对应。
10、三角形与全等三角形第五章图形的性质一 1三 角 形 的 边 角 关 系三角形的任意两边之和第三边;三角形的内角和等于2三 角 形 的 分 类按角可分为和,按边可分为和大于180直角三角形斜三角形不等边三角形等腰三角形 3三 角 形 的 主。
11、特殊三角形第五章图形的性质一 等 腰 边 三 角 形 直 角 三 角 形 的 性 质 及 判 定性质判定等腰三角形1两腰相等,两底角相等;2顶角的平分线,底边上的中线,底边上的高互相重合;3是轴对称图形,有一条对称轴1有两条边相等的三角形是。
12、多边形与平行四边形 第五章 图形的性质 一 1 多边形和正多边形的概念及性质 概念 在平面内,由一些线段首位顺次相接组成的封闭图形叫做 多边形 内角和 外角和 360 多边形 n3 对角线 条 概念 各条边都相等,且各内角都相等的多边形叫。