资源描述
第1节 简谐运动思维缴活1.振动现象在自然界中广泛存在,如钟摆的摆动,树梢在微风中的摆动,地震使大地的剧烈振动等,这些现象有何特点?提示:做振动的物体都在往复运动.2.拍皮球时,球在一定高度内上下往返运动,皮球的运动是不是简谐运动?提示:皮球的上下运动不是简谐运动,除用手拍击球外,皮球的运动是匀变速运动,其位移与时间关系不遵从F=-kx的关系.自主整理一、什么是机械振动1.定义:物体在_附近所做的往复运动,叫机械振动,简称为_.2.回复力:使物体回到_,方向跟偏离_的位移方向_的力,叫回复力,它是按力的_命名的一种力.二、弹簧振子的振动1.弹簧振子:弹簧振子是一种理想化模型,其主要组成部分是_和_.2.简谐运动:物体所受回复力的大小跟_大小成正比,并且总是指向_,物体的运动叫做简谐运动;或者说具有“加速度的大小与_成正比,加速度方向与_相反”特征的运动,称为简谐运动.高手笔记1.简谐运动的位移 不论简谐运动的初始位置为何处,简谐运动的位移总是从平衡位置指向振子所在位置的有向线段,方向为从平衡位置指向振子所在位置,大小为平衡位置到该位置的距离.位移的表示方法是:以平衡位置为坐标原点,以振动所在的直线为坐标轴,规定正方向,则某一时刻振子(偏离平衡位置)的位移用该时刻振子所在的位置坐标来表示. 振子在两“端点”位移最大,在平衡位置时位移为零.振子通过平衡位置,位移改变方向.2.简谐运动的速度 跟运动学中的含义相同.在所建立的坐标轴(也称为“直线坐标系”)上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反.应明确,速度和位移是彼此独立的物理量.如振动物体通过同一个位置,其位移矢量的方向是一定的,而其速度方向却有两种可能(两个“端点”除外):指向或背离平衡位置. 振子在两“端点”速度为零,在平衡位置时速度最大,振子在两“端点”速度改变方向.3.简谐运动的动力学特征 简谐运动是变加速运动,运动物体的位移、速度、加速度、能量的变化具有对称性和周期性.对称性是指距平衡位置两侧相等的位置上的以上各个量的大小相等.关于周期性是以上几个量在物体完成一次全振动的变化后开始重复.名师解惑 如何判断物体是否做简谐运动? 剖析:做简谐运动的物体,其受力特征为:F=-kx,这是判断物体是否做简谐运动的依据.例如判断置于液体中比重计的振动(不计液体阻力)是否为简谐运动. 对比重计作受力分析:重力G,竖直向下;浮力F,竖直向上.如图1-1-1(a)为比重计悬浮于液面而平衡.若比重计上下运动,如图1-1-1(b)(c),设上升的最高位置或最低位置与平衡位置的位移差为x.设比重计玻璃管均匀,截面积为S,平衡时水下体积为V0,则回复力为:图1-1-1F回=F浮-mg=(V0+Sx)g-mg=V0g+Sxg-mg已知比重计平衡时有:V0g=mg,代入上式得F回=mg+Sxg-mg=Sxg式中Sg为常数,记为k,则F回=kx考虑到位移x方向与回复力方向相反,则有F回=-kx 可知比重计在液面的上下运动属于简谐运动. 又比如小球在相接的两个光滑斜面上来回运动,如图1-1-2,两斜面倾角相同,相接处忽略小球的碰撞.小球虽然在斜面上来回运动,但小球来回运动的力是重力的一个分力F=mgsin,该力大小不变,不与位移成正比,所以这一运动不是简谐运动.图1-1-2讲练互动【例题1】如图1-1-3所示,一弹性小球被水平抛出,在两个互相竖直平行的平面间运动,小球落在地面之前的运动( )图1-1-3A.是机械振动,但不是简谐运动 B.是简谐运动,但不是机械振动C.是简谐运动,同时也是机械振动 D.不是简谐运动,也不是机械振动解析:机械振动具有往复的特性,可以重复地进行,小球在运动过程中,没有重复运动的路径,因此不是机械振动,当然也肯定不是简谐运动.答案:D绿色通道 做振动或简谐运动的物体一定都有一个中心位置,物体在中心位置附近做往复运动,简谐运动中其回复力还满足F=-kx.黑色陷阱 本题易错选A,对机械振动这一概念易忽视,其振动的特征是运动有重复性,这和小球多次重复碰撞平面是不同的.变式训练1下列说法中正确的是( )A.弹簧振子的运动是简谐运动 B.简谐运动就是指弹簧振子的运动C.简谐运动是匀变速运动 D.简谐运动是机械运动中最简单、最基本的一种解析:弹簧振子的运动是简谐运动,但简谐运动有许多,故A对,B错.简谐运动中物体受到的回复力是变力,所以简谐运动是非匀变速运动,故C错.简谐运动是机械振动中最基本、最简单的一种,机械运动与机械振动不同,故D错.答案:A2关于机械振动的位移和平衡位置,以下说法中正确的是( )A.平衡位置就是物体振动范围的中心位置B.机械振动的位移总是以平衡位置为起点C.机械振动的物体运动的路程越大,位移也越大D.机械振动的位移是指振动物体偏离平衡位置最远时的位移解析:做机械振动的物体是在平衡位置附近做往复运动的,故A对.机械振动中某一位置的位移是以平衡位置为位移起点,以某一位置为终点,位移的方向总是背离平衡位置,故B对,D错.机械振动是往复运动,所以振动物体的路程大,而位移不一定大,故D错.答案:AB【例题2】一水平弹簧振子做简谐运动,则下列说法中正确的是( )A.若位移为负值,则速度一定为正值,加速度也一定为正值B.振子通过平衡位置时,速度为零,加速度最大C.振子每次通过平衡位置时,加速度相同,速度也一定相同D.振子每次通过同一位置时,其速度不一定相同,但加速度一定相同.解析:如图1-1-4所示,设弹簧振子在A、B之间振动,O是它的平衡位置,并设向右为正.在振子由O向A运动过程中,振子的位移、速度为负值,加速度为正值,故A错.振子通过平衡位置时,加速度为零,速度最大,故B、C都错.当振子每次通过同一位置时,速度大小一样,方向可能向左也可能向右,加速度相同,故D选项正确.图1-1-4答案:D绿色通道 在分析简谐运动中各物理量的特点时,可画出某一实际运动的草图,使问题更具体,便于理解和分析.变式训练3弹簧振子以O点为平衡位置,在水平方向上的A、B两点间做简谐运动,以下说法正确的是( )A.振子在A、B两点时的速度和位移均为零B.振子在通过O点时速度的方向将发生改变C.振子所受的弹力方向总跟速度方向相反D.振子离开O点的运动总是减速运动,靠近O点的运动总是加速运动解析:振子在A、B两点时速度为零,位移最大,平衡位置速度最大,故A错,D对.振子通过O点运动方向不变,故B错.振子所受弹力方向指向平衡位置,速度方向有时指向平衡位置,有时背离平衡位置,故C错.答案:D体验探究【问题1】理想化实验在简谐运动中是如何体现的? 导思:在研究弹簧振子的振动情况时,忽略次要因素,突出主要因素,在实际问题中抽象出理想化模型,进一步推理理想化实验. 探究:通过对直杆上的弹簧振子和气垫导轨上的弹簧滑块振子观察,直杆上的弹簧振子振动越来越弱,很快会停止;而气垫导轨上的弹簧滑块振子,却能振动较长时间,由对比分析这两个振动情况的不同,是由于振子所受摩擦阻力不同.将这两个实际振动通过类似伽利略理想化实验的推理思路,抽象成一个质量为m的振子,只在弹力作用下做理想的简谐运动.【问题2】用气垫导轨上的弹簧滑块做实验时应注意的问题有哪些? 导思:从理想模型这一角度考虑. 探究:(1)气垫导轨要调水平,若倾斜,则回复力就不是弹力,物体就不做简谐运动了.(2)连接滑块的弹簧应是轻质弹簧,若不是,则振子所受弹力与整个弹簧的形变量就不再是F=kx的关系而较复杂.(3)要选用体积较小、质量较大,即可把振子认为是一质点的滑块.(4)操作时把振子拉离平衡位置不要超过弹性限度.教材链接【讨论与交流】(课本第5页) 图1-1-5是做简谐运动的小球在一次全振动过程中间隔相等的8个相继时刻的位置.试根据图示判断小球在一次全振动中位移大小和方向是怎样变化的,所受回复力、加速度又是如何变化的.并根据加速度与速度二者方向的关系,分析振子速度大小的变化情况.将你的判断填入下表的空格中.图1-1-5小球的简谐运动小球位置位移弹力加速度速度OA向右增大向左增大向左增大向右减小AO向右减小向左减小向左减小向左增大O-A向左增大向右增大向右增大向左减小-AO向左减小向右减小向右减小向右增大 所以在平衡位置O处,速度最大,位移、加速度、弹力最小;在A和-A处,速度最小,位移、加速度、弹力最大.6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375
展开阅读全文