资源描述
纸莎草文书,2,解一元一次方程,第,3,课时,1,使学生掌握去分母解方程的方法,总结解方程的步骤,2,经历去分母解方程的过程,体会把,“,复杂,”,转化为,“,简单,”,,把,“,新,”,转化为,“,旧,”,的转化的思想方法,3,培养学生自觉反思、检验方程的解是否正确的良好习惯,英国伦敦博物馆保存着一部极其珍贵的文物,纸莎草文书,.,这是古代埃及人用象形文字写在一种特殊的草上的著作,它于公元前,1700,年左右写成,至今已有三千七百多年,.,这部书中记载了许多有关数学的问题,其中有如下一道著名的求未知数的问题,.,问题:,一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是,33,,求这个数,.,纸莎草文书,你能解决以上古代问题吗?,分析:,你认为本题用算术方法解方便,还是用方程方法,解方便?,请你列出本题的方程,.,x+x+x+x=33,你能解出这道方程吗?把你的解法与其他同学交流,一下,看谁的解法好,.,总结:,像上面这样的方程中有些系数是分数,如果能,化去分母,把系数化为整数,则可以使解方程中的计,算更方便些,.,去分母时要注意什么问题,?,(1),方程两边,每一项都要乘,以各分母的,最小公倍数,.,(2),去分母后如果分子中含有两项,应将该分子添上括号,.,想一想,解:,去分母,得,5,(,3x,1,),10,2=,(,3x,2,),2,(,2x,3,),去括号,得,15x,5,20=3x,2,4x,6,移项,得,15x,3x,4x=,2,6,5,20,合并同类项,得,16x,=7,方程两边同除以,16,得,【,例,1】,【,解析,】,去分母,得,18x+3(x-1)=18,2,(,2,x,-1,),去括号,得,18,x,3x,3=18,4,x,+2,移项,得,18,x,+3,x,4,x,=18+2,3,合并同类项,得,25,x,=23,方程两边同除以,25,,得,x=,1.,去分母时,应在方程的左右两边乘以分母的,最小公倍数,;,2.,去分母的依据是,等式的基本性质,2,,去分母时不能漏乘,没有分母的项,;,3.,去分母与去括号这两步分开写,,不要跳步,,防止忘记变号,.,【,例,2】,解:,方程可以化为,去分母,得,5-2x=2+4x,移项,得,-2x-4x=2-5,合并同类项,得,-6x=-3,方程两边同除以,-6,,得,x=,00,的过程,请在前面,的括号内填写变形步骤,在后面的括号内填写变形依据,【,解析,】,原方程可变形为,去分母,得,3,(,3x+5,),=2,(,2x-1,),.,(),去括号,得,9x+15=4x-2.,(),移项,得,9x-4x=-15-2.,(),合并同类项,得,5x=-17.,等式的基本性质,2,去括号法则或乘法分配律,等式的基本性质,1,方程两边同除以,5,1.,把,=1,去分母后,得到的方程为,_.,2.,解方程,=1,时,去分母后,正确的结果,是,().,(A)4x+1-10 x+1=1(B)4x+2-10 x-1=1,(C)4x+2-10 x-1=6(D)4x+2-10 x+1=6,3x-2(x-3)=6,C,3.,解为,x=-3,的方程是,(),(A)2x-6=0 (B)3(x-2)-2(x-3)=5x,(C)=6(D),4.,若式子,(x-1),与,(x+2),的值相等,则,x,的值是,(),(A)6(B)7(C)8(D)-1,D,B,+=1(2)-=0,2x+3x-3=1 3-2x+6=0,5x=4 -2x=-9,x=x=,5.,指出下列解方程哪步变形是错误的,并指出错误的原因,.,x,3,x-1,2,1,2,x+3,3,4,5,9,2,漏乘,没变号,6.,小明在做解方程作业时,不小心将方程中的一个常数,污染了看不清楚,被污染的方程是,2y-=y-,怎么办呢,?,小明想了一想,便翻看了书后的答案,此方程,的解是,y=-.,很快补好了这个常数,这个常数应,是,_.,解一元一次方程的一般步骤,:,变形名称,具体的做法与依据,去分母,乘所有的分母的最小公倍数,.,依据是等式的基本性质,2,去括号,先去小括号,再去中括号,最后去大括号,.,依据是去括号法则和乘法分配律,移项,把含有未知数的项移到一边,常数项移到另一边,.“,过桥变号”,依据是等式的基本性质,1,合并同类项,将未知数的系数相加,常数项相加,.,依据是乘法分配律,系数化为,1,在方程的两边除以未知数的系数,.,依据是等式的基本性质,2.,忍耐和时间往往比力量和愤怒更有效,.,拉封丹,
展开阅读全文