资源描述
2019-2020年高中数学新人教版必修3教案:第1章 1-1-2 第3课时 循环结构 Word版含答案1掌握两种循环结构的程序框图的画法(重点)2能进行两种循环结构的程序框图的相互转化3能正确设计程序框图,解决有关实际问题(难点)基础初探教材整理1循环结构的定义阅读教材P12程序框图下面的内容,完成下列问题在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构反复执行的步骤称为循环体判断(正确的打“”,错误的打“”)(1)循环结构是在一些算法中从某处开始,按照一定条件反复执行处理某一步骤,因此循环结构一定包含条件结构()(2)循环结构中不一定包含条件结构()(3)循环结构中反复执行的步骤叫做循环体()【答案】(1)(2)(3)教材整理2常见的两种循环结构阅读教材P13例6上面的内容,完成下列问题1常见的两种循环结构名称结构图特征直到型循环结构先执行循环体后判断条件,若不满足条件则执行循环体,否则终止循环当型循环结构先对条件进行判断,满足时执行循环体,否则终止循环2.循环结构的特点(1)重复性:在一个循环结构中,总有一个过程要重复一系列的步骤若干次,而且每次的操作完全相同(2)判断性:每个循环结构都包含一个判断条件,它决定这个循环的执行与终止(3)函数性:循环变量在构造循环结构中起了关键作用,一般蕴含着函数的思想3理解循环结构应注意的两点(1)循环结构中必须包含条件结构,以保证在适当时候终止循环(2)循环结构内不存在无终止的循环,即死循环1直到型循环结构对应的框图为()【解析】根据直到型程序框图的概念进行判断【答案】B2阅读如图1131的框图,运行相应的程序,输出S的值为_图1131【解析】S0,n3,S0(2)38,n3121不成立;故S8(2)24,n2111成立故输出S的值为4.【答案】4小组合作型含循环结构的程序的运行执行如图1132所示的程序框图,输出的S值为()图1132A1B3C7D15【精彩点拨】根据程序框图进行判断,要注意程序终止的条件【尝试解答】程序框图运行如下:k03,S0201,k13;S1213,k212满足条件,继续循环得n2,2222不成立,不满足条件,所以输出n2.【答案】B含循环结构程序框图的设计设计一个算法,求123100的值,并画出程序框图【精彩点拨】式中各项相乘,且各项有规律递增,所以引入累乘变量S和计数变量i,利用SSi,ii1这两个式子反复执行,因此需要利用循环结构设计程序框图【尝试解答】算法如下:第一步,令S1.第二步,令i2.第三步,SSi.第四步,ii1.第五步,若i100,则输出S;否则,返回第三步该算法的程序框图如图所示1如果算法问题中涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的变化规律,就可以引入变量(我们称之为循环变量),构成循环结构2在循环结构中,要注意根据条件设计合理的计数变量、累加变量和累乘变量等,特别要求条件的表述要恰当、精确累加变量的初始值一般取0,而累乘变量的初始值一般取1.再练一题2根据例2选择另外一种循环结构,画出它的程序框图【解】程序框图:循环结构的实际应用某商场第一年销售计算机5 000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约几年可使总销售量达40 000台?画出解决此问题的程序框图【精彩点拨】根据题中条件解决该问题需选择循环结构画流程图【尝试解答】程序框图如图所示:用循环结构设计算法解决应用问题的步骤:(1)审题(2)建立数学模型(3)用自然语言表述算法步骤(4)确定每一个算法步骤所包含的逻辑结构,对于要重复执行的步骤,通常用循环结构来设计,并用相应的程序框图表示,得到表示该步骤的程序框图(5)将所有步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序框图再练一题3某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分及以上)的成绩,试设计一个算法,并画出程序框图. 【解】算法步骤如下:第一步,把计数变量n的初始值设为1.第二步,输入一个成绩r,比较r与60的大小若r60,则输出r,然后执行下一步;若r50,则结束程序框图如图:探究共研型循环变量的特征探究1在循环结构中,计数变量和累加(乘)变量有什么作用?【提示】一般地,循环结构中都有一个计数变量和累加(乘)变量:计数变量用于记录循环次数,同时它的取值还可能用于判断循环是否终止;累加(乘)变量用于表示每一步的计算结果计数变量和累加(乘)变量一般是同步执行的,累加(乘)一次,计数一次探究2利用循环结构描述算法,要注意什么?【提示】要注意循环条件、变量初值、循环体各语句之间的影响(1)注意各个语句顺序不同对结果的影响;(2)注意各个变量初始值不同对结果的影响;(3)要对循环开始和结束的变量及结束时变量的值认真检验,以免出现多循环或者漏循环如图1134所示的3个程序框图中,哪一个是满足122232n2106的最小正整数n的程序框图图1134【尝试解答】图中变量i2加给S后i再加1,在检验条件时,满足条件后输出的i比实际值多1,显然是未重视最后一次循环的检验所致图中,i加1后再加i2加给S,由于开始时i1,这样导致第一次执行循环体时加的就是22,漏掉了第1项,是由于未重视第一次执行循环时的数据所致图是满足条件的循环结构中的“条件”特征探究3循环结构的判断框中的条件是唯一的吗?【提示】不是在设计具体的程序框图时,循环结构的判断框中的条件可能根据选择模型的不同而不同,也可能由于具体算法的特点而不同,但不同的条件应该有相同的确定的结果探究4直到型循环结构与当型循环结构中的循环条件一样吗?【提示】不一样直到型循环结构中的循环条件是终止循环的,只要一满足条件就终止执行循环体,只有不满足条件时,才反复执行循环体;而当型循环结构中的循环条件是维持循环的,只有满足条件才执行循环体探究5当型循环结构与直到型循环结构的联系与区别是什么?【提示】1.联系(1)当型循环结构与直到型循环结构虽形式不同,但功能和作用是相同的,可以相互转化;(2)循环结构中必然包含条件结构,以保证在适当的时候终止循环;(3)循环结构只有一个入口和一个出口;(4)循环结构内不存在死循环,即不存在无终止的循环2区别直到型循环结构是先执行一次循环体,然后再判断是否继续执行循环体,当型循环结构是先判断是否执行循环体;直到型循环结构是在条件不满足时执行循环体,当型循环结构是在条件满足时执行循环体,要掌握这两种循环结构,必须抓住它们的区别已知有一列数,请使用两种循环结构框图实现求该数列前20项的和【精彩点拨】该列数中每一项的分母是分子数加1,单独观察分子,恰好是1,2,3,4,n,因此可用循环结构实现,设计数变量i,用ii1实现分子,设累加变量S,用SS,可实现累加,注意i只能加到20.【尝试解答】程序框图如下:直到型循环结构当型循环结构1下列框图是循环结构的是()图1135ABCD【解析】由循环结构的特点知是循环结构,其中是顺序结构,是条件结构【答案】C2一个算法的程序框图如图1136所示,当输入的x值为3时,输出y的值恰好是,则“”处的关系式是()Ayx3By3xCy3xDyx图1136【解析】当x3时,x0,由xx2,得x1;再用xx2,得x1;而当x1时,3x.【答案】C3如图1137所示的程序框图中,语句“SSn”将被执行的次数是()图1137A4B5C6D7【解析】由程序框图知:S123n.又12345120200,123456720200.故语句“SSn”被执行了5次【答案】B4运行如图1138程序框图,输出的结果为_图1138【解析】n1,S101;n2,S3;n3,S6;n4,S10;n5,S15;n6,S21;n7,S28.【答案】285画出计算1的值的一个程序框图 【解】程序框图如图所示:学业分层测评(四)循环结构(建议用时:45分钟)学业达标一、选择题1下列关于循环结构的说法正确的是()A循环结构中,判断框内的条件是唯一的B判断框中的条件成立时,要结束循环向下执行C循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D循环结构就是无限循环的结构,执行程序时会永无止境地运行下去【解析】由于判断框内的条件不唯一,故A错;由于当型循环结构中,判断框中的条件成立时执行循环体,故B错;由于循环结构不是无限循环的,故C正确,D错【答案】C2如图1139所示的程序框图中,循环体是()ABCD图1139【解析】根据循环结构的定义知为循环体,故选B.【答案】B3如图1140所示的程序框图表示的算法功能是()图1140A计算小于100的奇数的连乘积B计算从1开始的连续奇数的连乘积C从1开始的连续奇数的连乘积,当乘积大于或等于100时,计算奇数的个数D计算135n100时的最小的n的值【解析】循环一次时S13,循环2次时,S135,且S大于或等于100时输出i,故算法功能为D.【答案】D4阅读如图1141框图,运行相应的程序,则输出i的值为()图1141A3B4C5D6【解析】i1时,a1112,i2时,a2215,i3时,a35116,i4时,a41616550,所以输出i4.【答案】B5如图1142所示,是一个循环结构的算法,下列说法不正确的是()图1142A是循环变量初始化,循环就要开始B是循环体C是判断是否继续循环的终止条件D可以省略不写【解析】是循环变量初始化,表示循环就要开始,不可以省略不写,故选D.【答案】D二、填空题6如图1143所示的程序框图,输出的结果为_图1143【解析】S15420.【答案】207如图1144所示的程序框图,当输入x的值为5时,则其输出的结果是_. 图1144【解析】x5,x0,x532,x0,x231,y0.512.【答案】28若执行如图1145所示的程序框图,输入x11,x22,x33,2,则输出的数等于_图1145【解析】i1,s0(x1)2(12)21,i2,s1(x2)21(22)21,i3,s1(x3)21(32)22,ss2.【答案】三、解答题9用循环结构书写求1的算法,并画出相应的程序框图. 【解】相应的算法如下:第一步,S0,i1.第二步,SS.第三步,ii1.第四步,i1 000是否成立,若成立执行第5步;否则重复执行第二步第五步,输出S.相应的算法框图如图所示:10xx年某地森林面积为1 000 km2,且每年增长5%.到哪一年该地森林面积超过2 000 km2?(只画出程序框图)【解】程序框图如下:能力提升1执行如图1146所示的程序框图,若m5,则输出的结果为()图1146A4B5C6D8【解析】由程序框图可知,k0,P1.第一次循环:因为k05,所以P1301,k011.第二次循环:因为k15,所以P1313,k112.第三次循环:因为k25,所以P33233,k213.第四次循环:因为k35,所以P333336,k314.第五次循环:因为k45,所以P3634310,k415.此时满足判断框内的条件,输出结果为zlog93105.【答案】B2某程序框图如图1147所示,若输出的s57,则判断框内为()图1147Ak4?Bk5?Ck6?Dk7?【解析】由题意k1时,s1;当k2时,s2124;当k3时,s24311;当k4时,s211426;当k5时,s226557,此时输出结果一致,故k4时循环终止【答案】A3根据条件把图1148中的程序框图补充完整,求区间1,1 000内所有奇数的和,(1)处填_;(2)处填_图1148【解析】求1,1 000内所有奇数的和,初始值i1,S0,并且i1 000,所以(1)应填SSi,(2)为ii2.【答案】SSiii24如图1149所示的程序的输出结果为sum132,求判断框中的条件.图1149【解】i初始值为12,sum初始值为1,第一次循环sum11212,第二次sum1211132,只循环2次,i11.判断框中应填的条件为“i11?”或“i10?”
展开阅读全文