几何证明举例课件

八年级上册。全等三角形的判定方法有哪些。理由.(2)如果∠B=∠C。∠B=∠C。等边对等角。等角对等边。∵点P在线段AB的垂直平分线上(已知)。性质。线段垂直平分线上的点到这条线段两个。(3)等腰三角形有哪些性质。5.6.4几何证明举例。2.根据本册第二章的学习你知道角的垂直平分线有什么性质。5.6.5几何证明举例。

几何证明举例课件Tag内容描述:

1、5.6.1几何证明举例,八年级上册,全等三角形的判定方法有哪些?它有什么性质?其中哪些是公理?,如图,在ABC中,(1)如果AB=AC,可得,理由.(2)如果B=C,可得,理由.,B=C,等边对等角,AB=AC,等角对等边,已。

2、5.6.3几何证明举例,八年级上册,符号语言:,A,B,P,M,N,点P在线段AB的垂直平分线上(已知),PA=PB(线段垂直平分线上的点和这条线段两个端点的距离相等。),温故知新,性质:线段垂直平分线上的点到这条线段两个。

3、5.6.2几何证明举例,八年级上册,我们已经学习过等腰三角形,我们来回忆一下下列几个问题:,(1)什么叫做等腰三角形?(等腰三角形的定义),(3)等腰三角形有哪些性质?怎样判定?等边三角形呢?,(2)等腰三角形是轴对。

4、5.6.4几何证明举例,八年级上册,回顾与思考,1.什么叫角的平分线?2.根据本册第二章的学习你知道角的垂直平分线有什么性质?3.这个性质你是怎样得到的?这个性质是真命题吗?你能用逻辑推理的方法,证明它的真实性吗。

5、5.6.5几何证明举例,八年级上册,1.你现在了解几种全等三角形的判定方法,1.边边边简称“SSS”2.两边夹角简称“SAS”3.两角夹边简称“ASA”4.两角及对边简称“AAS”,复习提问,2.两边及其中一边的对角对应相等的两个三角。

标签 > 几何证明举例课件[编号:561299]

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!