高三数学文一轮备考 第2章第11节导数的应用

上传人:仙*** 文档编号:40820790 上传时间:2021-11-17 格式:DOC 页数:17 大小:159.50KB
返回 下载 相关 举报
高三数学文一轮备考 第2章第11节导数的应用_第1页
第1页 / 共17页
高三数学文一轮备考 第2章第11节导数的应用_第2页
第2页 / 共17页
高三数学文一轮备考 第2章第11节导数的应用_第3页
第3页 / 共17页
点击查看更多>>
资源描述
+2019年数学高考教学资料+高考真题备选题库第2章 函数、导数及其应用第11节 导数的应用考点一 应用导数研究函数的单调性1(2013新课标全国,5分)已知函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处的切线方程为y4x4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值解:本题主要考查导数的基本知识,利用导数判断函数单调性、求极值(1)f(x)ex(axab)2x4.由已知得f(0)4,f(0)4.故b4,ab8.从而a4,b4.(2)由(1)知,f(x)4ex(x1)x24x,f(x)4ex(x2)2x44(x2).令f(x)0得,xln 2或x2.从而当x(,2)(ln 2,)时,f(x)0;当x(2,ln 2)时,f(x)0时,f(x)0,当0x时,f(x)时,f(x)0,函数f(x)单调递增所以函数f(x)的单调递减区间是,单调递增区间是.当a0时,令f(x)0,得2ax2bx10.由b28a0,得x1,x2.当0xx2时,f(x)x2时,f(x)0,函数f(x)单调递增所以函数f(x)的单调递减区间是,单调递增区间是.综上所述,当a0,b0时,函数f(x)的单调递减区间是(0,);当a0,b0时,函数f(x)的单调递减区间是,单调递增区间是;当a0时,函数f(x)的单调递减区间是,单调递增区间是,.(2)由题意知,函数f(x)在x1处取得最小值由(1)知是f(x)的唯一极小值点,故1,整理得2ab1即b12a.令g(x)24xln x,则g(x).令g(x)0,得x,当0x0,g(x)单调递增;当x时,g(x)0,g(x)单调递减因此g(x)g1ln 1ln 40.故g(a)0,即24aln a2bln a0,即ln a2b.3(2012福建,5分)已知f(x)x36x29xabc,ab0;f(0)f(1)0;f(0)f(3)0.其中正确结论的序号是()ABC D解析:f(x)x36x29xabc,f(x)3x212x93(x1)(x3),令f(x)0,得x1或x3.依题意有,函数f(x)x36x29xabc的图像与x轴有三个不同的交点,故f(1)f(3)0,即(169abc)(3363293abc)0,0abc4,f(0)abc0,f(3)abc0,故是对的答案:C4(2012辽宁,5分)函数yx2ln x的单调递减区间为()A(1,1 B(0,1C1,) D(0,)解析:函数yx2ln x的定义域为(0,),yx,令y0,则可得0x1.答案:B5(2009江苏,5分)函数f(x)x315x233x6的单调减区间为_解析:f(x)3x230x333(x210x11)3(x1)(x11)0,解得:1x0时,(xk)f(x)x10,求k的最大值解:(1)f(x)的定义域为(,),f(x)exa.若a0,则f(x)0,所以f(x)在(,)上单调递增若a0,则当x(,ln a)时,f(x)0,所以,f(x)在(,ln a)上单调递减,在(ln a,)上单调递增(2)由于a1,所以(xk)f(x)x1(xk)(ex1)x1.故当x0时,(xk)f(x)x10等价于k0)令g(x)x,则g(x)1.由(1)知,函数h(x)exx2在(0,)上单调递增而h(1)0,所以h(x)在(0,)上存在唯一的零点故g(x)在(0,)上存在唯一的零点设此零点为,则(1,2)当x(0,)时,g(x)0.所以g(x)在(0,)上的最小值为g()又由g()0,可得e2,所以g()1(2,3)由于式等价于k0.解:(1)由题意得f(x)12x22a.当a0时,f(x)0恒成立,此时f(x)的单调递增区间为(,)当a0时,f(x)12(x)(x),此时函数f(x)的单调递增区间为(,和,),单调递减区间为, .(2)证明:由于0x1,故当a2时,f(x)|2a|4x32ax24x34x2.当a2时,f(x)|2a|4x32a(1x)24x34(1x)24x34x2.设g(x)2x32x1,0x1,则g(x)6x226(x)(x),于是x0(0,)(,1)1g(x)0g(x)1减极小值增1所以,g(x)ming()10.所以当0x1时,2x32x10.故f(x)|2a|4x34x20.考点二 应用导数研究函数的极值和最值1(2013新课标全国,5分)已知函数f(x)x3ax2bxc,下列结论中错误的是()A. x0R,f(x0)0B.函数yf(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(,x0)单调递减D.若x0是f(x)的极值点,则 f(x0)0解析:本题考查三次函数的性质,考查数形结合思想,考查考生分析问题和解决问题的能力由于三次函数的三次项系数为正值,当x时,函数值,当x时,函数值也,又三次函数的图象是连续不断的,故一定穿过x轴,即一定x0R,f(x0)0,选项A中的结论正确;函数f(x)的解析式可以通过配方的方法化为形如(xm)3n(xm)h的形式,通过平移函数图象,函数的解析式可以化为yx3nx的形式,这是一个奇函数,其图象关于坐标原点对称,故函数f(x)的图象是中心对称图形,选项B中的结论正确;由于三次函数的三次项系数为正值,故函数如果存在极值点x1,x2,则极小值点x2x1,即函数在到极小值点的区间上是先递增后递减的,所以选项C中的结论错误;根据导数与极值的关系,显然选项D中的结论正确. 答案:C2(2013福建,5分)设函数f(x)的定义域为R,x0(x00)是f(x)的极大值点,以下结论一定正确的是()AxR,f(x)f(x0)Bx0是f(x)的极小值点Cx0是f(x)的极小值点Dx0是f(x)的极小值点解析:本题主要考查函数的极值点、导数等基础知识,意在考查考生的数形结合能力、转化和化归能力、运算求解能力取函数f(x)x3x,则x为f(x)的极大值点,但f(3)f,排除A;取函数f(x)(x1)2,则x1是f(x)的极大值点,但1不是f(x)的极小值点,排除B;f(x)(x1)2,1不是f(x)的极小值点,排除C,故选D.答案:D3已知函数f(x)x(ln xax)有两个极值点,则实数a的取值范围是()A(,0)B.C(0,1) D(0,)解析:本题主要考查导数的应用,利用导数研究函数极值的方法,考查考生运算能力、综合分析问题的能力和化归与转化能力由题知,x0,f(x)ln x12ax,由于函数f(x)有两个极值点,则f(x)0有两个不等的正根,显然a0时不合题意,必有a0,所以0a1,求f(x)在闭区间0,2|a|上的最小值解:本题主要考查利用导数研究函数的单调性等性质,及导数应用等基础知识,同时考查分类讨论等综合解题能力(1)当a1时,f(x)6x212x6,所以f(2)6.又因为f(2)4,所以切线方程为y6x8.(2)记g(a)为f(x)在闭区间0,2|a|上的最小值f(x)6x26(a1)x6a6(x1)(xa)令f(x)0,得到x11,x2a.当a1时,x0(0,1)1(1,a)a(a,2a)2af(x)00f(x)0单调递增极大值3a1单调递减极小值a2(3a)单调递增4a3比较f(0)0和f(a)a2(3a)的大小可得g(a)当a2时,f(x)0,函数f(x)为增函数;当0x2时,f(x)0,函数f(x)为减函数,所以x2为函数f(x)的极小值点答案:D7(2011福建,5分)若a0,b0,且函数(x)4x3ax22bx2在x1处有极值,则ab的最大值等于()A2 B3C6 D9解析:函数的导数为 (x)12x22ax2b,由函数(x)在x1处有极值,可知函数(x)在x1处的导数值为零,122a2b0,所以ab6,由题意知a,b都是正实数,所以ab()2()29,当且仅当ab3时取到等号答案:D8(2011浙江,5分)设函数f(x)ax2bxc(a,b,cR)若x1为函数f(x)ex的一个极值点,则下列图像不可能为yf(x)的图像是()解析:若x1为函数f(x)ex的一个极值点,则易得ac.因选项A、B的函数为f(x)a(x1)2,则f(x)exf(x)exf(x)(ex)a(x1)(x3)ex,x1为函数f(x)ex的一个极值点满足条件;选项C中,对称轴x0,且开口向下,a0,b0.f(1)2ab0.也满足条件;选项D中,对称轴x1,且开口向上,a0,b2a.f(1)2ab0.与图矛盾答案:D9(2010山东,5分)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为yx381x234,则使该生产厂家获取最大年利润的年产量为()A13万件 B11万件C9万件 D7万件解析:因为yx281,所以当x9时,y0;当x(0,9)时,y0,所以函数yx381x234在(9,)上单调递减,在(0,9)上单调递增,所以x9是函数的极大值点,又因为函数在(0,)上只有一个极大值点,所以函数在x9处取得最大值答案:C10(2012广东,14分)设0a0,BxR|2x23(1a)x6a0,DAB.(1)求集合D(用区间表示);(2)求函数f(x)2x33(1a)x26ax在D内的极值点解:(1)方程2x23(1a)x6a0的判别式9(1a)248a9(a3)(a),而0a0,当0时,得a3,即0a,由2x23(1a)x6a0,解得x1,x2,有0x1x2,此时B(,x1)(x2,),DAB(0,x1)(x2,);当0时,得a,由x22x10,得x1,此时B(,1)(1,),DAB(0,1)(1,);当0时,得a1,BR,DAB(0,)综上所述:当0a时,D(0, )(,);当a时,D(0,1)(1,);当a1时,D(0,)(2)由题知f(x)6x26(1a)x6a6(x1)(xa),0a1,令f(x)0得xa或x1,当x1时,f(x)0,f(x)单调递增,当ax1时,f(x)0,f(x)单调递减当0a0,f(1)23(1a)6a3a10,再由f(x)的单调性可得0ax11x2,所以函数f(x)在D内的极值点为xa.当a时,D(0,1)(1,),函数f(x)在D内的极值点为xa.当a1时,D(0,),函数f(x)在D内的极值点为xa和x1.综上,当a1时,函数f(x)在D内的极值点为xa和x1;当a时,函数f(x)在D内的极值点为x;当0a0)(1)求f(x)的最小值;(2)若曲线yf(x)在点(1,f(1)处的切线方程为yx,求a,b的值解:(1)法一:由题设和均值不等式可知,f(x)axb2b,其中等号成立当且仅当ax1,即当x时,f(x)取最小值为2b.法二:f(x)的导数f(x)a,当x时,f(x)0,f(x)在(,)上单调递增;当0x时,f(x).证明:本题主要考查导数的运算及其几何意义,利用导数研究函数的单调性,考查分类讨论思想、化归与转化思想、函数与方程思想,考查综合分析问题和解决问题的能力(1)设函数f1(x)x3(a5)x(x0),f2(x)x3x2ax(x0),f1(x)3x2(a5),由于a2,0,从而当1x0时,f1(x)3x2(a5)3a50,所以函数f1(x)在区间(1,0内单调递减f2(x)3x2(a3)xa(3xa)(x1),由于a2,0,所以当0x1时,f2(x)1时,f2(x)0.即函数f2(x)在区间0,1)内单调递减,在区间(1,)内单调递增综合,及f1(0)f2(0),可知函数f(x)在区间(1,1)内单调递减,在区间(1,)内单调递增(2)由(1)知f(x)在区间(,0)内单调递减,在区间内单调递减,在区间内单调递增,因为曲线yf(x)在点Pi(xi,f(xi)(i1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且f(x1)f(x2)f(x3)不妨设x10x2x3,由3x(a5)3x(a3)x2a3x(a3)x3a,可得3x3x(a3)(x2x3)0,解得x2x3,从而0x2x3.设g(x)3x2(a3)xa,则gg(x2)g(0)a.由3x(a5)g(x2)a,解得x1,设t,则a,因为a2,0,所以t,故x1x2x3t(t1)2,即x1x2x3. 2(2013湖北,13分)设a0,b0,已知函数f(x).(1)当ab时,讨论函数f(x)的单调性;(2)当x0时,称f(x)为a,b关于x的加权平均数(i)判断f(1),f,f是否成等比数列,并证明ff;(ii)a,b的几何平均数记为G.称为a,b的调和平均数,记为H.若Hf(x)G,求x的取值范围解:本题主要考查不等式、导数的应用,利用导数研究函数的单调性等基础知识,考查运算能力及用函数思想分析解决问题的能力(1)f(x)的定义域为(,1)(1,),f(x).当ab时,f(x)0,函数f(x)在(,1),(1,)上单调递增;当ab时,f(x)0,f0,f0.故f(1)fab2,即f(1)f2.所以f(1),f2,f成等比数列因为,即f(1)f.由得ff.()由()知fH,fG.故由Hf(x)G,得ff(x)f.当ab时,ff(x)fa.这时,x的取值范围为(0,);当ab时,01,从而,由f(x)在(0,)上单调递增与式,得x,即x的取值范围为;当a1,从而,由f(x)在(0,)上单调递减与式,得x,即x的取值范围为.综上,当ab时,x的取值范围为(0,);当ab时,x的取值范围为;当a0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(2,0)内恰有两个零点,求a的取值范围;(3)当a1时,设函数f(x)在区间t,t3上的最大值为M(t),最小值为m(t),记g(t)M(t)m(t),求函数g(t)在区间3,1上的最小值解:(1)f(x)x2(1a)xa(x1)(xa)由f(x)0,得x11,x2a0.当x变化时f(x),f(x)的变化情况如下表:x(,1)1(1,a)a(a,)f(x)00f(x)极大值极小值故函数f(x)的单调递增区间是(,1),(a,);单调递减区间是(1,a)(2)由(1)知f(x)在区间(2,1)内单调递增,在区间(1,0)内单调递减,从而函数f(x)在区间(2,0)内恰有两个零点当且仅当解得0a0.(1)若对一切xR,f(x)1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定两点A(x1,f(x1),B(x2,f(x2)(x1x2),记直线AB的斜率为k,证明:存在x0(x1,x2),使f(x0)k成立解:(1)f(x)exa,令f(x)0得xln a.当xln a时,f(x)ln a时,f(x)0,f(x)单调递增,故当xln a时,f(x)取最小值f(ln a)aaln a.于是对一切xR,f(x)1恒成立,当且仅当aaln a1.令g(t)ttln t,则g(t)ln t.当0t0,g(t)单调递增;当t1时,g(t)0,g(t)单调递减故当t1时,g(t)取最大值g(1)1.因此,当且仅当a1时,式成立综上所述,a的取值集合为1(2)由题意知,ka,令(x)f(x)kex,则(x1)ex2x1(x2x1)1,(x2)ex1x2(x1x2)1令F(t)ett1,则F(t)et1.当t0时,F(t)0时,F(t)0,F(t)单调递增故当t0时,F(t)F(0)0,即ett10.从而ex2x1(x2x1)10,ex1x2(x1x2)10,又0,0,所以(x1)0.因为函数y(x)在区间x1,x2上的图象是连续不断的一条曲线,所以存在x0(x1,x2),使(x0)0,即f(x0)k成立高考数学复习精品高考数学复习精品
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!