资源描述
高考数学精品复习资料 2019.5课时作业33等比数列一、选择题1已知等比数列an中,a44,则a2·a6等于()A4 B8C16 D32解析:易知a2·a6a16.答案:C2在等比数列an中,若a42,a55,则数列lgan的前8项和等于()A6 B5C4 D3解析:因为a42,a55,所以a4·a510,所以lga1lga2lga7lga8lg(a1a2··a8)lg(a1a8)4lg(a4a5)44lg104.答案:C3已知等比数列an中,a1>0,则“a1<a4”是“a3<a5”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解析:设等比数列的公比为q.由a1<a4得a1<a1q3,因为a1>0,所以q3>1,即q>1,故a3<a5成立;由a3<a5得a1q2<a1q4,因为a1>0,所以q2>1,即q<1或q>1,所以“a1<a4”是“a3<a5”的充分不必要条件答案:A4已知正数组成的等比数列an,若a1·a20100,那么a7a14的最小值为()A20 B25C50 D不存在解析:(a7a14)2aa2a7·a144a7a144a1a21400,a7a1420.答案:A5已知等比数列an的前n项和为Sna·2n1,则a的值为()A B.C D.解析:当n2时,anSnSn1a·2n1a·2n2a·2n2,当n1时,a1S1a,a,a.答案:A6(20xx·太原一模)各项均为正数的等比数列an的前n项和为Sn,若Sn2,S3n14,则S4n()A80 B30C26 D16解析:由等比数列的性质可知,Sn,S2nSn,S3nS2n,S4nS3n仍为等比数列,故2,S2n2,14S2n成等比数列,则有(S2n2)22(14S2n),S2n6或S2n4,由于an的各项均为正数,故S2n6,则Sn,S2nSn,S3nS2n,S4nS3n,即2,4,8,16为等比数列,S4nS3n16,S4n30,故选B.答案:B二、填空题7(必修P54习题2.4A组第8题改编)在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为_解析:设该数列的公比为q,由题意知,1923×q3,q364,所以q4.所以插入的两个数分别为3×412,12×448.答案:12,488等比数列an满足an>0,nN*,且a3·a2n322n(n2),则当n1时,log2a1log2a2log2a2n1_.解析:由等比数列的性质,得a3·a2n3a22n,从而得an2n,log2a1log2a2log2a2n1log2(a1a2n1)·(a2a2n2)··(an1an1)anlog22n(2n1)n(2n1)2n2n.答案:2n2n9在各项均为正数的等比数列an中,已知a2a416,a632,记bnanan1,则数列bn的前5项和S5为_解析:设数列an的公比为q,由aa2a416得,a34,即a1q24,又a6a1q532,解得a11,q2,所以ana1qn12n1,bnanan12n12n3·2n1,所以数列bn是首项为3,公比为2的等比数列,所以S593.答案:93三、解答题10(20xx·新课标全国卷)已知各项都为正数的数列an满足a11,a(2an11)an2an10.()求a2,a3;()求an的通项公式解:()由题意可得a2,a3.()由a(2an11)an2an10得2an1(an1)an(an1)因为an的各项都为正数,所以.故an是首项为1,公比为的等比数列,因此an.11(20xx·天津卷)已知an是等比数列,前n项和为Sn(nN*),且,S663.()求an的通项公式;()若对任意的nN*,bn是log2an和log2an1的等差中项,求数列(1)nb的前2n项和解:()设数列an的公比为q.由已知,有,解得q2,或q1.又由S6a1·63,知q1,所以a1·63,得a11,所以an2n1.()由题意,得bn(log2anlog2an1)(log22n1log22n)n,即bn是首项为,公差为1的等差数列设数列(1)nb的前n项和为Tn,则T2n(bb)(bb)(bb)b1b2b3b4b2n1b2n2n2.1数列an满足:an1an1(nN*,R且0),若数列an1是等比数列,则的值等于()A1 B1C. D2解析:由an1an1,得an11an2.由于数列an1是等比数列,所以1,得2.答案:D2(20xx·福建模拟)已知等比数列an的各项均为正数且公比大于1,前n项积为Tn,且a2a4a3,则使得Tn>1的n的最小值为()A4 B5C6 D7解析:an是各项均为正数的等比数列且a2a4a3,aa3,a31. 又q>1,a1<a2<1,an>1(n>3),Tn>Tn1(n4,nN*),T1<1,T2a1·a2<1,T3a1·a2·a3a1a2T2<1,T4a1a2a3a4a1<1,T5a1·a2·a3·a4·a5a1,T6T5·a6a6>1,故n的最小值为6,故选C.答案:C3设数列an的前n项和为Sn,且a11,anan1(n1,2,3,),则S2n3_.解析:由题意,得S2n3a1(a2a3)(a4a5)(a2n2a2n3)1.答案:4(20xx·湖北武汉武昌调研)设Sn为数列an的前n项和,Sn(1)nan(nN*),则数列Sn前9项和为_解析:因为Sn(1)nan,所以Sn1(1)n1an1(n2)两式相减得SnSn1(1)nan(1)n1an1,即an(1)nan(1)nan1(n2),当n为偶数时,ananan1,即an1,此时n1为奇数,所以若n为奇数,则an;当n为奇数时,ananan1,即2anan1,所以an1,此时n1为偶数,所以若n为偶数,则an.所以数列an的通项公式为an所以数列Sn的前9项和为S1S2S3S99a18a27a36a43a72a8a9(9a18a2)(7a36a4)(3a72a8)a9.答案:5已知数列an满足a15,a25,an1an6an1(n2)(1)求证:an12an是等比数列;(2)求数列an的通项公式;(3)设3nbnn(3nan),求|b1|b2|bn|.解:(1)证明:an1an6an1(n2)an12an3an6an13(an2an1)(n2)a15,a25,a22a115,an2an10(n2),3(n2)数列an12an是以15为首项,3为公比的等比数列(2)由(1)得an12an15×3n15×3n.则an12an5×3n,an13n12(an3n)又a132,an3n0.an3n是以2为首项,2为公比的等比数列an3n2×(2)n1,即an2×(2)n13n.(3)由(2)及3nbnn(3nan)可得,3nbnn(an3n)n2×(2)n1n(2)n,bnnn,|bn|nn.设Tn|b1|b2|bn|,则Tn2×2nn,×,得Tn22×3(n1)nnn1,得Tn2nnn123×n1nn12(n3)n1Tn62(n3)n.
展开阅读全文