计算机图形学基于任意点的旋转变换

上传人:jian****019 文档编号:253068784 上传时间:2024-11-28 格式:PPT 页数:38 大小:241.50KB
返回 下载 相关 举报
计算机图形学基于任意点的旋转变换_第1页
第1页 / 共38页
计算机图形学基于任意点的旋转变换_第2页
第2页 / 共38页
计算机图形学基于任意点的旋转变换_第3页
第3页 / 共38页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,Rotate transformation about arbitrary point,Suppose the point is then the transformation can be composed by some fundamental transformations,Translation(T),Rotation(R),Inverse translation,T=T,-1,R T,Cont.,Scaling about arbitrary point,Reference point:,fixup point before and after scaling,Composition of translate,scale about origin,and inverse translate transformations,Cont.,Namely:,Symmetry about arbitrary line,T,R,S,4.2 window-to-viewport transformation,World Domain(,用户域WD,),指程序员用来定义草图的整个自然空间.,Window(,窗口区W,),在用户坐标系(世界坐标系WC)中预先选,定的将产生图形显示的区域称为窗口.,World-coordinate system(,用户坐标系WC,),世界坐标系,右手直角坐标系,Related concepts,Cont.,Screen Domain(,屏幕域SD,),设备输图形的最大区域,是有限的整数域.,Viewport(,视图区V,),在显示器坐标系中规定的显示图形的区域称为视(图)区.,Screen coordinates,(normalized)device coordinates,device coordinates:addressing by pixels,NDC:-1,1-a,a,窗口的取景器作用,Window as a viewfinder,利用窗口尺寸变化改变显示图形的大小,选窗口,的视见变换,选窗口,的视见变换,Cont.,视见变换将用户坐标系中窗口内的图形变换到显示器中的视见区中产生显示.,Window-to-Viewport transformation,window,Wxl,Wxr,Wyb,Wyt,P(x,y),Vxl,Vxr,viewport,Vyb,Vyt,P(x,y),Cont.,window,Wxl,Wxr,Wyb,Wyt,P(x,y),Vxl,Vxr,viewport,Vyb,Vyt,P(x,y),Cont.,transform matrix,窗口,Wxl,Wxr,Wyb,Wyt,Wxl,Wxr,Wyb,Wyt,-,-,Vxl,Vxr,Vyb,Vyt,-,-,Vxl,Vxr,vyb,Vyt,Cont.,Vxl,Vxr,Vyb,Vyt,NDC-to-DC transformation,NDC:-1,1-a,a,DC:0,M-10,N-1,Considering its discrete feature:,-0.5,M-1.5-0.5,N-1.5,The same linear transformation as the W-to-V transformation,Whereas:,Flow chart of 2D view,WC,世界坐标系内的变换,NDC,规格化坐标系到设备坐标系的变换,对窗口区进行裁剪,WC,DC,设备输出,二维图形显示流程,窗口到视图区的规格化变换,WC,Exercises,Exercise 4.1,Exercise 4.2,Exercise 4.3,4.3 3D transformations,Translate(平移)transformations,Rotate(旋转)transformations,Scale(缩放)transformations,Reflect(反射)transformations,Shear(错切)transformations,Composition(复合)of 2D transformations,与二维平移变换类似地使用齐次坐标表示为:,记为:,其中,Translate transformation,Translate transformation,Remarked:,Whereas:,Translate,记为:,Scale transformation,About origin,Cont.,About arbitrary point,The arbitrary reference point is:,Cont.,About arbitrary point,translate,scale about origin,inverse translate,Consists of:,The arbitrary reference point is:,Cont.,则变换矩阵为:,Parameters:rotate axis,rotate angle,二维旋转变换是三维空间中绕Z轴的旋转,记为:,X,Y,Z,Rotate transformation,Rotate about X axis,Equally with changing the coordinate system x,y,z to the coordinate system y,z,x.,Y,Z,X,X,Y,Z,Rotate about Y axis,Changing system x,y,z to system z,x,y,Z,X,Y,X,Y,Z,?:about arbitrary line,是关于某直线或平面进行的,关于某个轴进行的反射变换等同于关于该轴做,180,度的旋转变换,For instance:about Z axis,Reflect transformation,?:about arbitrary symmetry axis,Cont.,当反射平面是坐标平面时,等同于进行左、右手坐标系的互换,相应变换矩阵是把第三维坐标值取反,For instance:about XOY plane,?About arbitrary symmetry plane,Cont.,关于任意直线(或平面)的反射可以分解为平移、旋转(使得指定的反射直线或平面与某坐标轴或平面重合)和关于坐标直线(或平面)的反射。,Shear transformations,Dependence axis:corresponding coordinate is remained,Direction axis:corresponding coordinate is changed linearly,Representations:,变换的一般表达式是:,Shear transformations,Two methods of transformation,Coordinate system fixed,Graphics changed,Graphics fixed,Coordinate system changed,new coordinate system is saw as a graphics and transformed to overlap with the original coordinate system,Transforming coordinate system,Two means:,Define the new coordinate system directly,Define a vector in y direction of the new coordinate system,Cont.,Define a new system:composition of transformations,(x0,y0),(1)translate:T(-x0,-y0),(2)rotate:R(-,),(3)scale,(4)composition of above transformations(notice the sequence),Cont.,The matrix is:,Cont.,Define a vector in y direction of new system:,Y axis is:,(x0,y0),(x1,y1),X axis is:,Transformation is:,Contrast,(x0,y0),(x0,y0),(x1,y1),VS.,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!