资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,平面向量基本定理,必修系列,数学,4,f, f,G,P,复习回顾,(1)小明从A到B,再从B到C,则他两次的位移之和是:,A,B,C,D,(2)向量共线定理:,三角形法则,平行四边形法则,首尾相接,由首至尾,共起点,2011年11月3日1时43分,神舟八号与天宫一号第一次交会对接圆满成功,中国成为世界第三个独立掌握无人和载人空间对接技术的国家。承担“神舟八号”飞船和“天宫一号”目标飞行器发射任务的是,“长征二号F”运载火箭,。,v,v,1,v,2,v,问题情境,探究,:,依照速度的分解,平面内任一向量,a,可作怎样的分解呢?,平行四边形法则,给定平面内两个不共线的向量,e,1,e,2,可表示平面内任一向量,a,吗?,O,C,A,B,M,N,活动探究,给定平面内两个不共线的向量,e,1,e,2,可表示该平面内任一向量,a,吗?,O,C,A,B,M,N,活动探究,给定平面内两个不共线的向量,e,1,e,2,可表示该平面内任一向量,a,吗?,取,使,若,与,共线,则,使,若,活动探究,(),平面向量基本定理,存在性,唯一性,存在,如果,是同一平面内两个,不共线,向量,,那么对于这一平面的任意向量,一对实数,,使,有且只有,思考:,上述表达式中的,是否唯一,?,建构数学,( 2 ),基底:,把,不共线,的向量,叫做这一平面内,所有向量的,一组,基底,一个平面向量用一组基底,( 3 ),正交分解:,表示成:,称它为向量的分解,当,互相垂直时,称为向量的,正交分解,一维直线,平面向量基本定理,二维平面,思想有多远,就能走多远!,想一想,(1)一个平面内,可作为基底的向量有,对。,无数,(1)(3),数学应用,因为平行四边形的对角线互相平分,例1,数学应用,A,B,C,D,例2,M,A,N,C,D,B,例2、如图,已知梯形,ABCD,,,AB,/,CD,,,且,AB,= 2,DC,M,N,分别是,DC,AB,的中点.,数学应用,例3,课堂练习,(2),A,B,C,D,课堂练习,B,Q,P,D,C,A,课堂练习,B,Q,P,D,C,A,E,1、平面向量基本定理,2、对基本定理的理解,(1)基底不唯一,关键是不共线,、应用定理的关键是掌握向量的加法法则和向量共线定理,(2)实数对 的存在性和唯一性,课堂小结,1.非常学案P37 自主测评2、3、4,2.预习2.3.2平面向量的坐标运算.,课后作业,谢谢大家,
展开阅读全文