知识图谱梳理课件

上传人:o**** 文档编号:252921972 上传时间:2024-11-24 格式:PPTX 页数:28 大小:1.26MB
返回 下载 相关 举报
知识图谱梳理课件_第1页
第1页 / 共28页
知识图谱梳理课件_第2页
第2页 / 共28页
知识图谱梳理课件_第3页
第3页 / 共28页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,二级,三级,四级,五级,2020/1/29,#,知识图谱需要的技术,知识图谱需要的技术,知识图谱架构,知识图谱一般架构,:,来源自百度百科,复旦大学知识图谱架构,:,早期知识图谱架构,知识图谱架构知识图谱一般架构:来源自百度百科,知识图谱一般架构,:,来源自百度百科,知识图谱一般架构:来源自百度百科,知识图谱梳理课件,架构讨论,数据检索,预处理,构建关系矩阵网络,图谱参数调整,可视化数据,规范化处理,结果导读,早期知识图谱架构,架构讨论数据检索预处理构建关系矩阵网络图谱参数调整可视化数据,知识,抽取,实体概念抽取,实体概念映射,关系抽取,质量评估,知识抽取实体概念抽取,KDD,2014,Tutorial,on,Constructing,and,Mining,Web-scale,Knowledge,Graphs,New,York,August,24,2014,A,sampler,of,research,problems,Growth:,knowledge,graphs,are,incomplete!,Link,prediction,:,add,relations,Ontology,matching,:,connect,graphs,Knowledge,extraction,:,extract,new,entities,and,relations,from,web/text,Validation:,knowledge,graphs,are,not,always,correct!,Entity,resolution,:,merge,duplicate,entities,split,wrongly,merged,ones,Error,detection,:,remove,false,assertions,Interface:,how,to,make,it,easier,to,access,knowledge?,Semantic,parsing,:,interpret,the,meaning,of,queries,Question,answering,:,compute,answers,using,the,knowledge,graph,Intelligence:,can,AI,emerge,from,knowledge,graphs?,Automatic,reasoning,and,planning,Generalization,and,abstraction,9,KDD 2014 Tutorial on Construct,7,关系抽取,定义,:,常见手段,:,语,义模式匹配频繁模式抽取,基于密度聚类,基于,语义,相似,性,层次主题模型,弱监督,关系抽取定义:,KDD,2014,Tutorial,on,Constructing,and,Mining,Web-scale,Knowledge,Graphs,New,York,August,24,2014,Methods,and,techniques,Supervised,models,Semi-supervised,models,Distant,supervision,2.,Entity,resolution,Single,entity,methods,Relational,methods,3.,Link,prediction,Rule-based,methods,Probabilistic,models,Factorization,methods,Embedding,models,80,Not in this tutorial:,Entity classification,Group/expert detection,Ontology alignment,Object ranking,1.Relation extraction:,KDD 2014 Tutorial on Construct,9,KDD,2014,Tutorial,on,Constructing,and,Mining,Web-scale,Knowledge,Graphs,New,York,August,24,2014,Extracting,semantic,relations,between,sets,of,grounded,entities,Numerous,variants:,Undefined,vs,pre-determined,set,of,relations,Binary,vs,n-ary,relations,facet,discovery,Extracting,temporal,information,Supervision:,fully,un,semi,distant,-supervision,Cues,used:,only,lexical,vs,full,linguistic,features,82,Relation,Extraction,Kobe,Bryant,LA,Lakers,playFor,the,franchise,player,of,once,again,saved,man,of,the,match,for,the,Lakers”,his,team”,Los,Angeles”,“Kobe Bryant,“Kobe,“Kobe Bryant,?,KDD 2014 Tutorial on Construct,10,KDD,2014,Tutorial,on,Constructing,and,Mining,Web-scale,Knowledge,Graphs,New,York,August,24,2014,Supervised,relation,extraction,Sentence-level,labels,of,relation,mentions,Apple,CEO,Steve,Jobs,said.,=,(SteveJobs,CEO,Apple),Steve,Jobs,said,that,Apple,will.,=,NIL,Traditional,relation,extraction,datasets,ACE,2004,MUC-7,Biomedical,datasets,(e.g,BioNLP,clallenges),Learn,classifiers,from,+/-,examples,Typical,features:,context,words,+,POS,dependency,path,between,entities,named,entity,tags,token/parse-path/entity,distance,83,KDD 2014 Tutorial on Construct,11,KDD,2014,Tutorial,on,Constructing,and,Mining,Web-scale,Knowledge,Graphs,New,York,August,24,2014,Semi-supervised,relation,extraction,Generic,algorithm(,遗传算法,),1.,2.,3.,4.,5.,Start,with,seed,triples,/,golden,seed,patterns,Extract,patterns,that,match,seed,triples/patterns,Take,the,top-k,extracted,patterns/triples,Add,to,seed,patterns/triples,Go,to,2,Many,published,approaches,in,this,category:,Dual,Iterative,Pattern,Relation,Extractor,Brin,98,Snowball,Agichtein,&,Gravano,00,TextRunner,Banko,et,al.,07,almost,unsupervised,Differ,in,pattern,definition,and,selection,86,KDD 2014 Tutorial on Construct,12,founderOf,KDD,2014,Tutorial,on,Constructing,and,Mining,Web-scale,Knowledge,Graphs,New,York,August,24,2014,Distantly-supervised,relation,extraction,88,Existing,knowledge,base,+,unlabeled,text,generate,examples,Locate,pairs,of,related,entities,in,text,Hypothesizes,that,the,relation,is,expressed,Google,CEO,Larry,Page,announced,that.,Steve,Jobs,has,been,Apple,for,a,while.,Pixar,lost,its,co-founder,Steve,Jobs,.,I,went,to,Paris,France,for,the,summer.,Google,CEO,capitalOf,Larry,Page,France,Apple,CEO,Pixar,Steve,Jobs,founderOfKDD 2014 Tutorial on,13,Distant,supervision:,modeling,hypotheses,Typical,architecture:,1.,Collect,many,pairs,of,entities,co-occurring,in,sentences,from,text,corpus,2.,If,2,entities,participate,in,a,relation,several,hypotheses:,1.,All,sentences,mentioning,them,express,it,Mintz,et,al.,09,“,Barack,Obama,is,the,44th,and,current,President,of,the,US,.”,(BO,employedBy,USA),89,KDD,2014,Tutorial,on,Constructing,and,Mining,Web-scale,Knowledge,Graphs,New,York,August,24,2014,Distant supervision:modeling,14,KDD,2014,Tutorial,on,Constructing,and,Mining,Web-scale,Knowledge,Graphs,New,York,August,24,2014,Sentence-level,features,Lexical:,words,in,between,and,around,mentions,and,their,parts-of-,speech,tags,(conjunctive,form),Syntactic:,dependency,parse,path,between,mentions,along,with,side,nodes,Named,Entity,Tags:,for,the,mentions,Conjunctions,of,the,above,features,Distant,supervision,is,used,on,to,lots,of,data,sparsity,of,conjunctive,forms,not,an,issue,92,KDD 2014 Tutorial on Construct,15,Distant,supervision:,modeling,hypotheses,T
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!