资源描述
2019-2020年高考数学回归课本复数教案旧人教版、基础知识1. 复数的定义:设i为方程x2=-l的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。便产生形如a+bi(a,bWR)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。2. 复数的几种形式。对任意复数z=a+bi(a,bWR),a称实部记作Re(z),b称虚部记作Im(z).z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接0Z,设ZxOZ=0,|oz|=r,则a=rcos0,b=rsin0,所以z=r(cos0+isin0),这种形式叫做三角形式。若z=r(cos0+isin0),则8称为z的辐角。若OW02n,贝90称为z的辐角主值,记作0=Arg(z).r称为z的模,也记作|z|,由勾股定理知|z|二.如果用ei0表示cos0+isin0,则z=rei0,称为复数的指数形式。3. 共轭与模,若z=a+bi,(a,bR),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);(3);(4);(5);(6);(7)|z|-|z|W|z土z|W|z|+|z|;(8)121212|z+z12+|z-z12=2|z12+2|z12;(9)若|z|=1,则。1212124. 复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z=r(cos0+isin0),z=r(cos0+isin0),则11112222zz=rrcos(0+0)+isin(0+0);若cos(0-0)+isin(0-0),用指数形式记121212121212为zz=rrei(01+02),12125. 棣莫弗定理:r(cos0+isin0)n=rn(cosn0+isinn0).0+2k兀0+2k兀6. 开方:若r(cos0+isin0),则w=n:r(o+is),k=0,1,2,n-1。nn7. 单位根:若wn=1,则称w为1的一个n次单位根,简称单位根,记Z=,则全部单位根可表示为1,.单位根的基本性质有(这里记,k=1,2,n-1):(1)对任意整数k,若k=nq+r,qGZ,0WrWn-1,有Z=Z;(2)对任意整数m,当n2时,有=特别1+Z+Z+-+Z=0;nq+rr12n-1(3)xn-1+xn-2+x+1=(x-Z)(x-Z)(x-Z)=(x-Z)(x-)(x-).12n-118. 复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。9. 复数z是实数的充要条件是z=;z是纯虚数的充要条件是:z+=0(且zM0).10. 代数基本定理:在复数范围内,一元n次方程至少有一个根。11. 实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(bM0)是方程的一个根,贝0a-bi也是一个根。12. 若a,b,cWR,aM0,则关于x的方程ax2+bx+c=0,当A=b2-4ac0时方程的根为二、方法与例题1. 模的应用。例1求证:当nWN时,方程(z+1)2n+(z-1)2n=0只有纯虚根。+证明若z是方程的根,则(z+1)2n=-(z-1)2n,所以|(Z+1)2n|=|-(zT)加|,即|z+1|2=|zT|2,即(z+1)(+1)=(z-1)(-1),化简得z+=0,又z=0不是方程的根,所以z是纯虚数。例2设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。解因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)=|f(1)+f(-1)-f(i)-f(-i)|三|f(l)|+|f(-l)|+|f(i)|+|f(-i)|=4,其中等号成立。所以f(l),f(-l),-f(i),-f(-i)四个向量方向相同,且模相等。所以f(l)=f(-l)=-f(i)=-f(-i),解得a=b=0.2. 复数相等。例3设入GR,若二次方程(l-i)x2+(入+i)x+l+入i=0有两个虚根,求入满足的充要条件。解若方程有实根,则方程组有实根,由方程组得(入+l)x+入+1=0.若入=-1,则方程x2-x+l=0中40无实根,所以入HT。所以x=-l,入=2.所以当入工2时,方程无实根。所以方程有两个虚根的充要条件为入工2。3三角形式的应用。例4设nWxx,nWN,且存在8满足(sin8+icos0)n=sinn0+icosn0,那么这样的n有多少个?解由题设得cos(扌-0)+isin(号-9)n=cosn&-0)+isin(-0)=cos(-n0)+isin(-n0),所以n=4k+1.又因为OWnWxx,所以lWkW500,所以这样的n有500个。4二项式定理的应用。例5计算:(1)C0C2+C4+C100;(2)C1C3+C5C99100100100100100100100100解(1+i)100=(1+i)250=(2i)50=-250,由二项式定理(1+i)100=(C0-C2+C4+C100)+(100100100100C0+C1i+C2i2HFC99i99+C100i100=100100100100100C1-C3+C5C99)i,比较实部和虚部,得C0-C2+C4+C100=-250,100100100100100100100100C1-C3+C5C99=0。1001001001005复数乘法的几何意义。例6以定长线段BC为一边任作ABC,分别以AB,AC为腰,B,C为直角顶点向外作等腰直角ABM、等腰直角厶ACN。求证:MN的中点为定点。证明设|BC|=2a,以BC中点0为原点,BC为x轴,建立直角坐标系,确定复平面,则B,C对应的复数为-a,a,点A,M,N对应的复数为Z,Z2,Z3,由复数乘法的几何意义得:,BM=z+a=i(za),由+得z+z=i(z+a)-i(z-a)=2ai.设MN的中点为P,212311对应的复数z=,为定值,所以MN的中点P为定点。例7设A,B,C,D为平面上任意四点,求证:ABAD+BCAD三ACBD。证明用A,B,C,D表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B|CD|+|BC|A-D|三(A-B)(C-D)+(B-C)(A-D).所以|AB|CD|+|BC|A-D|三|A-C|BD|,“=”成立当且仅当B-AB-CD-AB-CArg()=Arg(),即Arg()+Arg()=n,即A,B,C,D共圆时D-AC-DB-AD-C成立。不等式得证。6复数与轨迹。例8ABC的顶点A表示的复数为3i,底边BC在实轴上滑动,且|BC|=2,求ABC的外心轨迹。解设外心M对应的复数为z=x+yi(x,yWR),B,C点对应的复数分别是b,b+2.因为外心M是三边垂直平分线的交点,而AB的垂直平分线方程为|z-b|=|z-3i|,BC的垂直平分线的方程为|z-b|=|z-b-2|,所以点M对应的复数z满足|z-b|=|z-3i|=|z-b-2|,消去b解得所以ABC的外心轨迹是轨物线。7复数与三角。例9已知cosa+cosp+cosy=sina+sinp+siny=0,求证:cos2a+cos2p+cos2y=0。证明令Z二cosa+isina,=cosp+isinp,=cosY+isiny,则z+z+z=0。所以z+z+z二z+z+z二0.又因为|z|=l,i=l,2,3.123123123i所以z=1,即i由z+z+z=0得x2+x2+x2+2zz+2zz+2zz=0.=zzz123riii)+、zzz丿123123123122331=zzz(z+z+z)=0.123123所以所以cos2a+cos2p+cos2y+i(sin2a+sin2p+sin2y)=0.所以cos2a+cos2p+cos2y=0。例10求和:S=cos200+2cos400+18cosl8X200.解令w=cos200+isin20。,则wi8=l,令P=sin200+2sin400+18sinl8X20。,则S+iP=w+2w2+18wi8.由Xw得w(S+iP)=w2+2w3+17wi8+18wi9,由-得(l-w)(S+iP)二w+w2+wi8-18wi9二,所以S+iP二,所以8复数与多项式。例11已知f(z)二czn+czn-i+cz+c是n次复系数多项式(c工0).01n-1n0求证:一定存在一个复数z,|z|Wl,并且|f(z)|三|c|+|c|.0000n证明记czn+czn-i+cz=g(z),令=人碍)-Arg(z),则方程g(Z)-ceie=0为n次方01n-1n00程,其必有n个根,设为z,z,,z,从而g(z)-ceie=(z-z)(z-z)(z-z)c,令z=012n012n0得-ceie=(-l)nzz巳c,取模得|zz巳|=1。所以z,z,,z中必有一个z使得|z|W012n012n12nii1, 从而f(z)=g(z)+c=ceie=c,所以|f(z)|=|ceie+c|=|c|+|c|.iin0ni0n0n9. 单位根的应用。例12证明:自00上任意一点p到正多边形AA-A各个顶点的距离的平方和为定值。12n证明取此圆为单位圆,0为原点,射线0A为实轴正半轴,建立复平面,顶点A对应n1复数设为,则顶点A2A3An对应复数分别为2,3,.,n.设点p对应复数Z,贝y|z|=1,且=2n-工IpAI2=Iz-kI2=(z-k)(z-k)=(2-kz-kz)=2n-z工kza二k=2n-z工k-z工k=2n.命题得证。kk=1k=1k=1k=1k=1k=1k=1k=110复数与几何。例13如图15-2所示,在四边形ABCD内存在一点P,使得PAB,PCD都是以P为直角顶点的等腰直角三角形。求证:必存在另一点Q,使得QBC,QDA也都是以Q为直角顶点的等腰直角三角形。证明以P为原点建立复平面,并用A,B,C,D,P,Q表示它们对应的复数,由题设及复数乘法的几何意义知D=iC,B=iA;取,则C-Q=i(B-Q),则4BCQ为等腰直角三角形;又由C-Q=i(B-Q)得,即A-Q=i(D-Q),所以ADQ也为等腰直角三角形且以Q为直角顶点。综上命题得证。例14平面上给定AAA及点p,定义A=A,s4,构造点列p,p,p,,使得p为绕1230ss-3012k+1中心A顺时针旋转1200时p所到达的位置,k=0,l,2,若p=p.证明:AAA为等边k+1k19860123三角形。证明令u=,由题设,约定用点同时表示它们对应的复数,取给定平面为复平面,则p1=(1+u)A1-up0,p2=(1+u)A2-up1,p3=(1+u)A3-up2,XU2+X(-u)得p=(1+u)(A-uA+U2A)+p=w+p,w为与p无关的常数。同理得3321000叮w+p3=2w+p0,pi986=662w+p0=p0,所以w=0,从而A3-uA2+U2A1=0.由u2=u-l得A3-A1=(A2-Ai)u,这说明AA2A3为正三角形。三、基础训练题1满足(2x2+5x+2)+(y2-y-2)i=0的有序实数对(x,y)有组。2. 若zWC且z2=8+6i,且z3-16z-=。3复数z满足|z|=5,且(3+4i)z是纯虚数,则。4. 已知,则1+z+z2+z1992=。5. 设复数z使得的一个辐角的绝对值为,则z辐角主值的取值范围是。6. 设z,w,入WC,|入|工1,则关于z的方程-八z=w的解为z=。7. 设0x1,则2arctan。&若a,B是方程ax2+bx+c=0(a,b,cWR)的两个虚根且,则。9.若a,b,cC,则a2+b2c2是a2+b2-c20成立的条件。10. 已知关于x的实系数方程x2-2x+2=0和x2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m取值的集合是。11. 二次方程ax2+x+1=0的两根的模都小于2,求实数a的取值范围。12. 复平面上定点Z,动点Z对应的复数分别为z,z,其中z工0,且满足方程|z-z|=|z|,01010101另一个动点Z对应的复数z满足Zz=-1,求点Z的轨迹,并指出它在复平面上的形状和位置。13. N个复数z,z,,z成等比数列,其中|z|工1,公比为q,|q|=1且qM土1,复数12n1w,w,w满足条件:w=z+h,其中k=1,2,n,h为已知实数,求证:复平面内表示12nkkw,w,w的点p,p,p都在一个焦距为4的椭圆上。12n12n四、高考水平训练题1. 复数z和cos0+isin0对应的点关于直线|iz+1|=|z+i|对称,则z=。2. 设复数z满足z+|z|=2+i,那么z=。3有一个人在草原上漫步,开始时从0出发,向东行走,每走1千米后,便向左转角度,他走过n千米后,首次回到原出发点,则n=。4. 若,贝y|z|=。5. 若a20,k=1,2,,n,并规定a=a,使不等式乙、:a2一aa+a2九乙a恒成kn+11Vkkk+1k+1kk=1k=16. 已知点P为椭圆上任意一点,以OP为边逆时针作正方形OPQR,则动点R的轨迹方程为7. 已知P为直线x-y+l=O上的动点,以OP为边作正4OPQ(O,P,Q按顺时针方向排列)。则点Q的轨迹方程为。8. 已知zGC,则命题“z是纯虚数”是命题“”的条件。9. 若nWN,且n23,则方程zn+i+zn-l=O的模为1的虚根的个数为。10设(xxx+xxx+3)xx=a+ax+ax2+axn012naaaa则a-+2+a-5+022322+a-3k11. 设复数zi,z2满足Z1,其中AMO,AGC。证明:(1)|Z+a|z2+a|=|a|2;(2)12. 若zWC,且|z|=1,u=z4-z3-3z2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.1z1=1z1=1z1=1,12313.给定实数a,b,c,已知复数z1,z2,z3满足1zzz+T+zzz2311,|az1+bz2+cz3|的值。三、联赛一试水平训练题I. 已知复数z满足则z的辐角主值的取值范围是。2设复数z=cos0+isin0(0,|A0|=|B0|,则4OAB面积是。6. 设,则(x-w)(x-w3)(x-w7)(x-w9)的展开式为。7. 已知()m=(1+i)n(m,nWN),则mn的最小值是。+8复平面上,非零复数z1,z2在以i为圆心,1为半径的圆上,z2的实部为零,Z的辐角主值为,则z2=。9. 当nWN,且1WnW100时,的值中有实数个。10. 已知复数Z,z2满足,且,则的值是。II. 集合A=z|zi8=1,B=w|w48=1,C=zw|zWA,wWB,问:集合C中有多少个不同的元素?12. 证明:如果复数A的模为1,那么方程的所有根都是不相等的实根(nGN).+13对于适合|z|W1的每一个复数z,要使0|az+B|2)。其中S为实数且|S|W2,求证:复数a,a,a,a,a12345,.兀.2兀.(n-1)兀n2.求证:sm-sm-sm=nnn2n-13. 已知p(z)二Zn+cZn-l+cZn-2+C是复变量Z的实系数多项式,且|p(i)|1,求证:存在12n实数a,b,使得p(a+bi)=0且(a2+b2+1)24b2+1.4. 运用复数证明:任给8个非零实数a,a,,a,证明六个数aa+aa,aa+aa,aa+aa,128132415261728aa+aa,aa+aa,aa+aa中至少有一个是非负数。3546374857685. 已知复数z满足11zio+1Oiz9+1OizT1=O,求证:|z|=1.6. 设Z1,Z2,Z3为复数,求证:|Z|+|z|+|z|+|z+z+z|2|z+z|+|z+z|+|z+zI。1231231223312019-2020年高考数学回归课本平面几何教案旧人教版一、常用定理(仅给出定理,证明请读者完成)梅涅劳斯定理设分别是厶ABC的三边BC,CA,AB或其延长线上的点,若三点共线,则梅涅劳斯定理的逆定理条件同上,若则三点共线。塞瓦定理设分别是厶ABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点,则塞瓦定理的逆定理设分别是厶ABC的三边BC,CA,AB或其延长线上的点,若则三线共点或互相平行。角元形式的塞瓦定理分别是ABC的三边BC,CA,AB所在直线上的点,则平行或共点的sinZCBBsinZBBAsinZBAAsinZACCsinZAACsinZCCB广义托勒密定理设ABCD为任意凸四边形,则ABCD+BCAD三ACBD,当且仅当A,B,C,D四点共圆时取等号。斯特瓦特定理设P为卜ABC的边BC上任意一点,P不同于B,C,则有AP2=AB2+AC2-BPPC.西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ABC的外心0,垂心H,重心G三点共线,且二、方法与例题1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。例1在厶ABC中,ZABC=7Oo,ZACB=3O。,P,Q为卜ABC内部两点,ZQBC=ZQCB=lOo,ZPBQ=ZPCB=20。,求证:A,P,Q三点共线。证明设直线CP交AQ于P,直线BP交AQ于P,因为ZACP=ZPCQ=10o,所以,在ABP,BPQ,ABC中由正弦定理有ABAP二2,sinZAPBsinZABP22由,得。又因为P1,P2同在线段AQ上,所以P1,P2重合,又BP与CP仅有一个交点,所以P,P即为P,所以A,P,Q共线。12122面积法。例2见图16-1,OABCD中,E,F分别是CD,BC上的点,且BE=DF,BE交DF于P,求证:AP为ZBPD的平分线。证明设A点到BE,DF距离分别为,丸,则S=1BExh,SAABE21AADF又因为S=S,又BE=DFOABCDADF所以h=h,所以PA为ZBPD的平分线。123. 几何变换。例3(蝴蝶定理)见图16-2,AB是00的一条弦,M为AB中点,CD,EF为过M的任意弦,CF,DE分别交AB于P,Q。求证:PM=MQo证明由题设0MAB。不妨设。作D关于直线0M的对称点。连结,则DM=DM.ZPMD=ZDMQ.要证PM=MQ,只需证,又ZMDQ=ZPFM,所以只需证F,P,M,共圆。因为Z=1800-=1800-Z=180o-Zo(因为0MoAB/)所以F,P,M,四点共圆。所以逊MDQ。所以MP=MQ。例4平面上每一点都以红、蓝两色之一染色,证明:存在这样的两个相似三角形,它们的相似比为1995,而且每个三角形三个顶点同色。证明在平面上作两个同心圆,半径分别为1和1995,因为小圆上每一点都染以红、蓝两色之一,所以小圆上必有五个点同色,设此五点为A,B,C,D,E,过这两点作半径并将半径延长分别交大圆于,B,q,DjEj由抽屉原理知这五点中必有三点同色,不妨设为,B,q,则4ABC与AA1B1C1都是顶点同色的三角形,且相似比为1995。4. 三角法。例5设AD,BE与CF为AABC的内角平分线,D,E,F在AABC的边上,如果ZEDF=90o,求ZBAC的所有可能的值。解见图16-3,记ZADE=a,ZEDC=B,由题设ZFDA=-a,ZBDF=-p,AEDECEDE由正弦定理:=,=sina.AsinpsmCsin一厂2AEsinasinC得=一得CEsinpA,厂sin2-、亠sinasinCsinC又由角平分线定理有,又,所以=sinp.AsmA厂sin2化简得,同理,即所以,所以sinpcosa-cospsina=sin(p-a)=0.又-np-a1PA+PB+PC1=3丨PGI.又因为不全共线,上式“=”不能成立,所以PA+PB+PC3PG。6解析法。例7H是厶ABC的垂心,P是任意一点,HLPA,交PA于L,交BC于X,HMPB,交PB于M,交CA于Y,HNPC交PC于N,交AB于Z,求证:X,Y,Z三点共线。解以H为原点,取不与条件中任何直线垂直的两条直线为x轴和y轴,建立直角坐标系,用(x,y)表示点k对应的坐标,则直线PA的斜率为,直线HL斜率为,直线HL的方kk程为x(xP-xA)+y(yP-yA)=0.又直线HA的斜率为,所以直线BC的斜率为,直线BC的方程为xxA+yyA=xAxB+yAyB,又点CAAABAB在直线BC上,所以xx+yy=xx+yy.CACAABAB同理可得叫+%人=叫+人人=叫叫+人人.又因为X是BC与HL的交点,所以点X坐标满足式和式,所以点X坐标满足xxP+yyP=xAxB+yAyB.同理点Y坐标满足xxP+yyP=xBxC+yByC.点Z坐标满足xxP+yyP=xCxA+yCyA.由知,表示同一直线方程,故X,Y,Z三点共线。7四点共圆。例8见图16-5,直线l与00相离,P为l上任意一点,PA,PB为圆的两条切线,A,B为切点,求证:直线AB过定点。证明过O作OCl于C,连结OA,OB,BC,OP,设OP交AB于M,则OPAB,又因为OAPA,0BPB,0CPC。所以A,B,C都在以OP为直径的圆上,即O,A,P,C,B五点共圆。AB与OC是此圆两条相交弦,设交点为Q,又因为OPAB,OCCP,所以P,M,Q,C四点共圆,所以OMOP=OQOC。由射影定理OA2=OMOP,所以OA2=OQOC,所以OQ=(定值)。所以Q为定点,即直线AB过定点。三、习题精选1.0O和OO2分别是ABC的边AB,AC上的旁切圆,0O与CB,CA的延长线切于E,G,OO与BC,BA的延长线切于F,H,直线EG与FH交于点P,求证:PABC。22. 设0O的外切四边形ABCD的对角线AC,BD的中点分别为E,F,求证:E,O,F三点共线。3. 已知两小圆00与00相外切且都与大圆00相内切,AB是00与00的一条外公切线,1212A,B在00上,CD是00与00的内公切线,00与00相切于点P,且P,C在直线AB1212的同一侧,求证:P是厶ABC的内心。4. ABC内有两点M,N,使得ZMAB=ZNAC且ZMBA=ZNBC,求证:AM-ANBM-BNCM-CN.AB-ACBC-BACA-CB5. ABC中,0为外心,三条高AD,BE,CF相交于点H,直线ED和AB相交于点M,直线FD和AC相交于点N,求证:(1)0BDF,0CDE;(2)0HMN。6. 设点I,H分别是锐角ABC的内心和垂心,点B1,C1分别是边AC,AB的中点,已知射线BI交边AB于点B(BMB),射线CI交AC的延长线于点C,BC与BC相交于点K,A12212221为卜BHC的外心。试证:A,I,A1三点共线的充要条件是厶BKB2和4CKC?的面积相等。7. 已知点A,B,C,点A,B,C,分别在直线l,l上,BC交BC于点M,CA交AC1112221221121212于点N,BA交BA于L。求证:M,N,L三点共线。12218. ABC中,ZC=900,ZA=300,BC=1,求AABC的内接三角形(三个顶点分别在三条边上的三角形)的最长边的最小值。9. AABC的垂心为H,外心为0,外接圆半径为R,顶点A,B,C关于对边BC,CA,AB的对称点分别为,求证:三点共线的充要条件是0H=2R。
展开阅读全文