资源描述
2020珠海四中高三数学(理)专题复习概率与统计一、选择题1、(2020广东高考)已知离散型随机变量的分布列为 则的数学期望 ( )A . B C D2.(2020广东高考)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.B.C.D.3、(2020广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军若两队胜每局的概率相同,则甲队获得冠军的概率为A BC D4、(2020广州一模)某中学从某次考试成绩中抽取若干名学生的分数,并绘制图1分数频率/组距50607080901000.0100.0150.0200.0250.0300成如图1的频率分布直方图样本数据分组为,若用分层抽样的方法从样本中抽取分数在范围内的数据16个,则其中分数在范围内的样本数据有A5个 B6个 C8个 D10个5、(2020梅州3月一模)如图,设D是图中连长为2的正方形区域,E是函数yx3的图象与x轴及x1围成的阴影区域,向D中随机投一点,则该点落入E中的概率为A、B、C、D、二、解答题6、(2020广东高考)某车间共有名工人,随机抽取名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. 第17题图() 根据茎叶图计算样本均值;() 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间名工人中有几名优秀工人;() 从该车间名工人中,任取人,求恰有名优秀工人的概率.7、(2020广东高考)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:、.()求图中的值;()从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求的数学期望.8、(2020广东高考)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素的含量(单位:毫克)下表是乙厂的5件产品的测量数据:编号123451691781661751807580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2)当产品中的微量元素满足且时,该产品为优等品用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望)9、(2020广州一模)甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是,甲,丙两人同时不能被聘用的概率是,乙,丙两人同时能被聘用的概率是,且三人各自能否被聘用相互独立(1)求乙,丙两人各自能被聘用的概率;(2)设表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求的分布列与均值(数学期望)10、为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校男生的人数并完成下面频率分布直方图;(2)估计该校学生身高(单位:cm)在的概率;(3)在男生样本中,从身高(单位:cm)在的男生中任选3人,设表示所选3人中身高(单位:cm)在的人数,求的分布列和数学期望11、袋中有20个大小相同的球,其中记上0号的有10个,记上号的有个(=1,2,3,4).现从袋中任取一球.表示所取球的标号.()求的分布列,期望和方差;()若, ,试求a,b的值.12、为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。()求n,p的值并写出的分布列;()若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率13、现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市“楼市限购令”赞成人数如下表月收入(单位百元)15,2525,3535,4545,5555,6565,75频数510151055赞成人数4812521()由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;月收入不低于55百元的人数月收入低于55百元的人数合计赞成不赞成合计()若对在15,25) ,25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ,求随机变量的分布列及数学期望。14、(2020韶关一模)某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为,.(1)求直方图中的值;(2)如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;(3)现有名上学路上时间小于分钟的新生,其中人上学路上时间小于分钟. 从这人中任选人,设这人中上学路上时间小于分钟人数为,求的分布列和数学期望15、(2020汕头一模)广东省汕头市日前提出,要提升市民素质和城市文明程度,促进经济发展有大的提速,努力实现“幸福汕头”的共建共享现随机抽取50位市民,对他们的幸福指数进行统计分析,得到如下分布表:幸福级别非常幸福幸福不知道不幸福幸福指数(分)9060300人数(个)192173(I)求这50位市民幸福指数的数学期望(即平均值);(11)以这50人为样本的幸福指数来估计全市市民的总体幸福指数,若从全市市民(人数很多)任选3人,记表示抽到幸福级别为“非常幸福或幸福”市民人数求的分布列;(III)从这50位市民中,先随机选一个人记他的幸福指数为m,然后再随机选另一个人,记他的幸福指数为n,求nm+60的概率P答案:1、A2、解析:D.两位数共有90个,其中个位数与十位数之和为奇数的两位数有45个,个位数为0的有5个,所以概率为.3、解析:(D)乙获得冠军的概率为,则甲队获得冠军的概率为4、B5、B6、() 样本均值为; () 由()知样本中优秀工人占的比例为,故推断该车间名工人中有名优秀工人.() 设事件:从该车间名工人中,任取人,恰有名优秀工人,则.7、解析:()由,解得.()分数在、的人数分别是人、人.所以的取值为0、1、2.,所以的数学期望是.8、解:(1)设乙厂生产的产品数量为件,则,解得所以乙厂生产的产品数量为35件(2)从乙厂抽取的5件产品中,编号为2、5的产品是优等品,即5件产品中有2件是优等品由此可以估算出乙厂生产的优等品的数量为(件)(3)可能的取值为0,1,2 的分布列为:0129、解:(1)记甲,乙,丙各自能被聘用的事件分别为,由已知,相互独立,且满足 解得,所以乙,丙各自能被聘用的概率分别为, (2)的可能取值为1,3 因为 所以 所以的分布列为 所以 10、解(1)样本中男生人数为40 ,由分层抽样比例为10%可得全校男生人数为400-2分频率分布直方图如右图示:-6分(2)由表1、表2知,样本中身高在的学生人数为:5+14+13+6+3+1=42,样本容量为70 ,所以样本中学生身高在的频率-8分故由估计该校学生身高在的概率-9分(3)依题意知的可能取值为:1,2,3,-12分的分布列为: -13分的数学期望-14分11、解:()的分布列为:01234P()由,得a22.7511,即又所以当a=2时,由121.5+b,得b=-2; 当a=-2时,由1-21.5+b,得b=4.或即为所求.12、 (1)由得,从而的分布列为0123456(2)记”需要补种沙柳”为事件A, 则 得 或 13、解:()2乘2列联表月收入不低于55百元人数月收入低于55百元人数合计赞成32不赞成18合计104050.所以没有99%的把握认为月收入以5500为分界点对“楼市限购令”的态度有差异. (6分) ()所有可能取值有0,1,2,3,所以的分布列是所以的期望值是。 (12分)14、(1)由直方图可得:.所以 .2分(2)新生上学所需时间不少于60分钟的频率为:4分因为所以名新生中有名学生可以申请住宿.6分(3)的可能取值为0,1,2.7分所以的可能取值为分 所以的分布列为:01211分12分125、解:()记Ex表示这50位市民幸福指数的数学期望,(1分)()的可能取值为0、1、2、3 (2分)(3分)(4分)(5分)(6分)分布列为0123P()设所有满足条件的对立事件nm+60的概率为P1满足m=0且n=60的事件数为:(8分)满足m=0且n=90的事件数为:(9分)满足m=30且n=90的事件数为:(10分)(11分)所以满足条件nm+60的事件的概率为(12分)
展开阅读全文