2020高考物理一轮复习 第四章 第3讲 圆周运动及其应用学案(含解析).doc

上传人:tian****1990 文档编号:6347342 上传时间:2020-02-23 格式:DOC 页数:35 大小:1.54MB
返回 下载 相关 举报
2020高考物理一轮复习 第四章 第3讲 圆周运动及其应用学案(含解析).doc_第1页
第1页 / 共35页
2020高考物理一轮复习 第四章 第3讲 圆周运动及其应用学案(含解析).doc_第2页
第2页 / 共35页
2020高考物理一轮复习 第四章 第3讲 圆周运动及其应用学案(含解析).doc_第3页
第3页 / 共35页
点击查看更多>>
资源描述
圆周运动及其应用主干梳理 对点激活知识点匀速圆周运动、角速度、线速度、向心加速度匀速圆周运动的向心力1.匀速圆周运动(1)定义:线速度大小不变的圆周运动。(2)性质:加速度大小不变,方向总是指向圆心的变加速曲线运动。(3)条件:有初速度,受到一个大小不变,方向始终与速度方向垂直且指向圆心的合外力。2描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,具体如下:知识点匀速圆周运动与非匀速圆周运动知识点离心现象1离心运动(1)定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,所做的逐渐远离圆心的运动。(2)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向。(3)受力特点:Fn为提供的向心力。当Fnm2r时,物体做匀速圆周运动。当Fnm2r时,物体将逐渐靠近圆心,做近心运动。一 思维辨析1做圆周运动的物体,一定受到向心力的作用,所以分析受力时,必须指出受到的向心力。()2匀速圆周运动是匀变速曲线运动,非匀速圆周运动是变加速曲线运动。()3匀速圆周运动的向心加速度与半径成反比。()4在光滑的水平路面上汽车不可以转弯。()5摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故。()6火车转弯速率小于规定的数值时,内轨受到的压力会增大。()答案1.2.3.4.5.6.二 对点激活1. (人教版必修2P25T3改编)如图所示,小物体A与水平圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A受力情况是()A重力、支持力B重力、向心力C重力、支持力、指向圆心的摩擦力D重力、支持力、向心力、摩擦力答案C解析A受三个力作用,重力和支持力平衡,指向圆心的摩擦力充当向心力,故C正确。2(人教版必修2P22T1)(多选)甲、乙两物体都在做匀速圆周运动,下列哪种情况下甲的向心加速度比较大()A它们的线速度相等,乙的半径小B它们的周期相等,甲的半径大C它们的角速度相等,乙的线速度小D它们的线速度相等,在相同时间内甲与圆心的连线扫过的角度比乙的大答案BCD解析由a知当v相同的情况下,r甲r乙时,a甲r乙时,a甲a乙,故B正确;由av知当相同情况下,v甲v乙时,a甲a乙,故C正确;由av知当v相同情况下,甲乙时,a甲a乙,故D正确。3(人教版必修2P26T5)一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小。如图A、B、C、D分别画出了汽车转弯时所受合力F的四种方向,你认为正确的是()答案C解析汽车沿曲线转弯,所以受到垂直速度方向指向轨迹凹侧的向心力Fn,汽车的速度逐渐减小,所以还受到与速度方向相反沿轨迹切线方向的切向力Ft,这两个力的合力方向如图C所示。4下列关于离心现象的说法正确的是()A当物体所受的离心力大于向心力时产生离心现象B做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做背离圆心的圆周运动C做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将沿切线做直线运动D做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做曲线运动答案C解析物体只要受到力,必有施力物体,但“离心力”是没有施力物体的,故所谓的离心力是不存在的,只要向心力不足,物体就做离心运动,故A错误;做匀速圆周运动的物体,当所受的一切力突然消失后,物体将沿切线做匀速直线运动,故B、D错误,C正确。考点细研 悟法培优考点1圆周运动的运动学分析1圆周运动各物理量间的关系2对公式vr的理解当r一定时,v与成正比;当一定时,v与r成正比;当v一定时,与r成反比。3对a2r的理解当v一定时,a与r成反比;当一定时,a与r成正比。4常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即vAvB。(2)摩擦(齿轮)传动:如图丙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即vAvB。(3)同轴转动:如图丁所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即AB。例1如图所示的皮带传动装置中,右边两轮连在一起同轴转动。图中三轮半径的关系为:r12r2,r31.5r1,A、B、C三点为三个轮边缘上的点,皮带不打滑,则A、B、C三点的线速度之比为_;角速度之比为_;周期之比为_。解题探究(1)A、B两点位于两轮边缘靠皮带传动,那么vA与vB有什么关系?A与B有什么关系?提示:vAvB,。(2)B、C为同轴转动的两点,vB与vC、B与C的关系是什么?提示:BC,。尝试解答113_122_211。因为A、B两轮由不打滑的皮带相连,所以相等时间内A、B两点转过的弧长相等,即vAvB,由vr知,又B、C是同轴转动,相等时间内转过的角度相等,即BC,由vr知。所以vAvBvC113,ABC122,再由T可得,TATBTC1211。总结升华解决传动问题的关键(1)确定属于哪类传动方式,抓住传动装置的特点。同轴转动:固定在一起共轴转动的物体上各点角速度相同;皮带传动、齿轮传动和摩擦传动:齿轮传动和不打滑的摩擦(皮带)传动的两轮边缘上各点线速度大小相等。如例1,右边两轮为同轴转动;左轮与右边小轮为皮带传动。(2)结合公式vr,v一定时与r成反比,一定时v与r成正比,判定各点v、的比例关系。若判定向心加速度a的比例,可巧用av这一规律。变式1(2018福州期末)如图是某共享自行车的传动结构示意图,其中是半径为r1的牙盘(大齿轮),是半径为r2的飞轮(小齿轮),是半径为r3的后轮。若某人在匀速骑行时每秒踩脚踏板转n圈,则下列判断正确的是()A牙盘转动角速度为B飞轮边缘转动线速度为2nr2C牙盘边缘向心加速度为D自行车匀速运动的速度为答案D解析脚踏板与牙盘同轴转动,二者角速度相等,每秒踩脚踏板n圈,因为转动一圈,相对圆心转的角度为2,所以角速度12n,A错误;牙盘边缘与飞轮边缘线速度的大小相等,据vr可知,飞轮边缘上的线速度v12nr1,B错误;牙盘边缘的向心加速度a(2n)2r1,故C错误;飞轮角速度2,自行车后轮角速度与飞轮角速度相等,自行车匀速运动的速度v2r3,故D正确。考点2圆锥摆模型及其临界问题1圆锥摆模型的受力特点受两个力,且两个力的合力沿水平方向,物体在水平面内做匀速圆周运动。2运动实例3解题方法:对研究对象进行受力分析,确定向心力来源。确定圆心和半径。应用相关力学规律列方程求解。4规律总结(1)圆锥摆的周期如图摆长为L,摆线与竖直方向夹角为。受力分析,由牛顿第二定律得:mgtanmrrLsin解得T22。(2)结论摆高hLcos,周期T越小,圆锥摆转的越快,越大。摆线拉力F,圆锥摆转的越快,摆线拉力F越大。摆球的加速度agtan。5圆锥摆的两种变形变形1:具有相同锥度角(长度不同)的圆锥摆,如图甲所示。由agtan知A、B的向心加速度大小相等。由a2r知AvB。变形2:具有相同摆高、不同摆长和摆角的圆锥摆,如图乙所示。由T2知摆高h相同,则TATB,AB,由vr知vAvB,由a2r知aAaB。例2如图所示,用一根长为l1 m的细线,一端系一质量为m1 kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角37(sin370.6,cos370.8,g取10 m/s2,结果可用根式表示),问:(1)若要小球离开锥面,则小球的角速度0至少为多大?(2)若细线与竖直方向的夹角60,则小球的角速度为多大?解题探究(1)小球离开锥面的临界条件是什么?提示:锥面对小球支持力为零,且细线与竖直方向的夹角为。(2)细线与竖直方向夹角为60时,小球受几个力?提示:2个,重力、细线的拉力。尝试解答(1) rad/s(2)2 rad/s(1)当小球刚要离开锥面时,锥面给小球的支持力为零,受力分析如图1。由牛顿第二定律得mgtanmlsin0 rad/s。(2)当细线与竖直方向夹角60时,小球已飞离斜面,受力分析如图2。由牛顿第二定律得mgtanm2rrlsin联立得2 rad/s。总结升华解决圆锥摆临界问题的技巧圆锥摆的临界问题,主要就是与弹力有关的临界问题。(1)绳上拉力的临界条件是:绳恰好拉直且没有弹力。绳上的拉力恰好达最大值。(2)接触或脱离的临界条件是物体与物体间的弹力恰好为零。(3)对于火车转弯、半圆形碗内的水平圆周运动有两类临界情况:摩擦力的方向发生改变;发生相对滑动。变式21(2018通州模拟)如图所示,一个内壁光滑的圆锥筒,其轴线垂直于水平面,圆锥筒固定不动。有一个质量为m的小球A紧贴着筒内壁在水平面内做匀速圆周运动,筒口半径和筒高分别为R和H,小球A所在的高度为筒高的一半。已知重力加速度为g,则()A小球A做匀速圆周运动的角速度B小球A受到重力、支持力和向心力三个力作用C小球A受到的合力大小为D小球A受到的合力方向垂直于筒壁斜向上答案A解析小球受重力、支持力两个力作用,合力方向沿水平方向指向轴线,故B、D错误;受力分析如图所示,由牛顿第二定律得m2,得,故A正确;合力大小为,故C错误。变式22(多选)如图所示,物体P用两根长度相等、不可伸长的细线系于竖直杆上,它们随杆转动,若转动角速度为,则()A只有超过某一值时,绳子AP才有拉力B绳子BP的拉力随的增大而增大C绳子BP的张力一定大于绳子AP的张力D当增大到一定程度时,绳子AP的张力大于绳子BP的张力答案ABC解析较小时,绳子AP处于松弛状态,只有超过某一值,才产生拉力,A正确;当AP、BP都产生张力之后,受力如图,FBPsinmgFAPsinFBPcosFAPcosm2r由可知FBPFAP,随的增大FBP、FAP都变大,B、C正确,D错误。考点3水平转盘上运动物体的临界问题水平转盘上运动物体的临界问题,主要涉及到与摩擦力和弹力有关的临界极值问题。1如果只有摩擦力提供向心力,物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,则最大静摩擦力Fm,方向指向圆心。2如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其临界情况要根据题设条件进行判断,如判断某个力是否存在以及这个力存在时的方向(特别是一些接触力,如静摩擦力、绳的拉力等)。3运动实例例3游乐场中有一种娱乐设施叫“魔盘”,人坐在转动的大圆盘上,当大圆盘转速增加时,人就会自动滑向盘边缘。如图所示,有a、b、c三人坐在圆盘上,a的质量最大,b、c的质量相差不多,但c离圆盘中心最远,a、b离圆盘中心的距离相等。若三人与盘面间的动摩擦因数均相等,且假定最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A当圆盘转速增加时,三人同时开始滑动B当圆盘转速增加时,b首先开始滑动C当圆盘转速增加时,a和c首先开始滑动D当圆盘转速增加时,c首先开始滑动解题探究(1)人和水平圆盘何时发生相对滑动?提示:他们之间的摩擦力达最大值时。(2)如何分析谁先滑动?提示:谁的临界角速度小谁先滑动。尝试解答选D。设圆盘的角速度为,则人所受的向心力Fm2R,且未滑动前圆盘上的人做共轴运动,角速度相同。圆盘上的人受到的最大静摩擦力为Ffmg。由题意得,当m2Rmg,即2Rg时,圆盘上的人开始滑动,c离圆盘中心最远,当圆盘转速增加时,c先开始滑动,之后a、b再同时开始滑动,D正确。总结升华解决临界问题的注意事项(1)先确定研究对象受力情况,看哪些力充当向心力,哪些力可能突变引起临界问题。(2)注意分析物体所受静摩擦力大小和方向随圆盘转速的变化而发生变化。(3)关注临界状态,即静摩擦力达到最大值时。例3中,随圆盘转动、静摩擦力提供向心力,随转速的增大,静摩擦力增大,当达到最大静摩擦力时开始滑动,出现临界情况,此时对应的角速度为临界角速度。变式3两个质量分别为2m和m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO的距离为L,b与转轴的距离为2L,a、b之间用长为L的强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用表示圆盘转动的角速度,下列说法正确的是()Aa比b先达到最大静摩擦力Ba、b所受的摩擦力始终相等C 是b开始滑动的临界角速度D当 时,a所受摩擦力的大小为答案D解析木块随圆盘一起转动,当绳子上无拉力时,静摩擦力提供向心力,由牛顿第二定律得:Ffm2r,Ffmaxkmg,联立得max,故随着增大,b先达到临界角速度,b先达到最大静摩擦力,故A错误。在b的静摩擦力没有达到最大前,由Ffm2r,a、b质量分别是2m和m,而圆周运动的半径r分别为L和2L,所以开始时a和b受到的摩擦力是相等的;当b受到的静摩擦力达到最大后,即,对于b木块有:kmgFm22L,对于a木块有fF2m2L,联立得f4m2Lkmgkmg;可知二者受到的摩擦力不一定相等,故B错误。b刚要滑动时,对b木块有kmgFm2L,对a木块有k2mgF2mL,联立得kmg2kmg4mL,得0,故C错误。当 时,b未滑动,a所受摩擦力大小f4m2Lkmg,故D正确。考点4竖直面内的圆周运动“绳”模型和“杆”模型1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”。2绳、杆模型涉及的临界问题例4(2018山西吕梁模拟)(多选)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()A小球通过最高点时的最小速度vminB小球通过最高点时的最小速度vmin0C小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力解题探究(1)该光滑圆形管道属于绳模型还是杆模型?提示:杆模型。(2)杆模型中小球通过最高点的临界速度是多大?提示:v0。尝试解答选BC。在最高点,由于外管或内管都可以对小球产生弹力作用,当小球的速度等于0时,内管对小球产生弹力,大小为mg,故最小速度为0,故A错误,B正确;小球在水平线ab以下管道运动时,由于沿半径方向的合力提供小球做圆周运动的向心力,所以外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力,故C正确;小球在水平线ab以上管道运动时,由于沿半径方向的合力提供小球做圆周运动的向心力,可能外侧管壁对小球有作用力,也可能外侧管壁对小球没有作用力,故D错误。总结升华竖直面内圆周运动问题的解题技巧(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同。(2)确定临界点:抓住绳模型中最高点v,以及杆模型中最高点v0这两个临界条件。(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况。(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F合F向(其中F合为沿半径方向的合力)。(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程。 变式41(2018福州质检)如图所示,长均为L的两根轻绳,一端共同系住质量为m的小球,另一端分别固定在等高的A、B两点,A、B两点间的距离也为L。重力加速度大小为g。现使小球在竖直平面内以AB为轴做圆周运动,若小球在最高点速率为v时,两根轻绳的拉力恰好均为零,则小球在最高点速率为2v时,每根轻绳的拉力大小为()A.mg B.mg C3mg D2mg答案A解析当小球到达最高点速率为v时,两根轻绳中张力恰好均为零,有mgm;当小球到达最高点速率为2v时,设每根轻绳中张力大小为F,应有2Fcos30mgm,解得Fmg,A正确。变式42一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,如图所示,则下列说法正确的是()A小球过最高点时,杆所受到的弹力可以等于零B小球过最高点的最小速度是C小球过最高点时,杆对球的作用力一定随速度增大而增大D小球过最高点时,杆对球的作用力一定随速度增大而减小答案A解析轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v时,杆所受的弹力等于零,A正确,B错误。若v,则杆在最高点对小球的弹力竖直向下,mgFm,随v增大,F增大,故C、D均错误。考点5斜面上圆周运动的临界问题在斜面上做圆周运动的物体,根据受力情况的不同,可分为以下三类。1物体在静摩擦力作用下做圆周运动。2物体在绳的拉力作用下做圆周运动。3物体在杆的作用下做圆周运动。这类问题的特点是重力的分力和其他力的合力提供向心力,运动和受力情况比较复杂。例5(2014安徽高考) 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止。物体与盘面间的动摩擦因数为(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30,g取10 m/s2。则的最大值是()A. rad/s B. rad/sC1.0 rad/s D0.5 rad/s解题探究(1)随着增大会发生什么?提示:小物体在圆盘上滑动。(2)小物体转到哪个位置最容易发生上述情况?提示:最低点。尝试解答选C。当物体转到圆盘的最低点恰好要滑动时,转盘的角速度最大,其受力如图所示(其中O为对称轴位置)。由沿斜面的合力提供向心力,有mgcos30mgsin30m2R得 1.0 rad/s,C正确。总结升华与竖直面内的圆周运动类似,斜面上的圆周运动也是集中分析物体在最高点和最低点的受力情况,列牛顿运动定律方程来解题。只是在受力分析时,一般需要进行立体图到平面图的转化,这是解斜面上圆周运动问题的难点。变式5如图所示,在倾角为30的光滑斜面上,有一根长为L0.8 m的轻杆,一端固定在O点,另一端系一质量为m0.2 kg的小球,沿斜面做圆周运动,取g10 m/s2,若要小球能通过最高点A,则小球在最低点B的最小速度是()A4 m/s B2 m/sC2 m/s D2 m/s答案A解析小球受轻杆控制,在A点的最小速度为零,由动能定理可得:mg2Lsinmv0,可得vB4 m/s,A正确。答卷现场2水平面内的圆周运动(16分)如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO重合。转台以一定角速度匀速转动,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO之间的夹角为60,重力加速度大小为g。(1)若0,小物块受到的摩擦力恰好为零,求0;(2)(1k)0,且0k1,求小物块受到的摩擦力大小和方向。高考模拟 随堂集训1(2018江苏高考)(多选)火车以60 m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10 s内匀速转过了约10。在此10 s时间内,火车()A运动路程为600 m B加速度为零C角速度约为1 rad/s D转弯半径约为3.4 km答案AD解析圆周运动的弧长svt6010 m600 m,A正确;火车转弯是圆周运动,圆周运动是变速运动,所以合力不为零,加速度不为零,故B错误;由题意得圆周运动的角速度3.14 rad/s rad/s,又vr,所r180 m3439 m,故C错误,D正确。2(2016全国卷) 小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。将两球拉起,使两绳均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点()AP球的速度一定大于Q球的速度BP球的动能一定小于Q球的动能CP球所受绳的拉力一定大于Q球所受绳的拉力DP球的向心加速度一定小于Q球的向心加速度答案C解析设小球的质量为m,绳长为L,根据动能定理得mgLmv2,解得v,LPLQ,所以vPmQ,LPmQ,所以P球所受绳的拉力大于Q球所受绳的拉力,故C项正确;向心加速度a2g,所以在轨迹的最低点,P、Q两球的向心加速度相同,故D项错误。3(2017江苏高考) 如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上。物块质量为M,到小环的距离为L,其两侧面与夹子间的最大静摩擦力均为F。小环和物块以速度v向右匀速运动,小环碰到杆上的钉子P后立刻停止,物块向上摆动。整个过程中,物块在夹子中没有滑动。小环和夹子的质量均不计,重力加速度为g。下列说法正确的是()A物块向右匀速运动时,绳中的张力等于2FB小环碰到钉子P时,绳中的张力大于2FC物块上升的最大高度为D速度v不能超过 答案D解析物块受到的摩擦力小于等于最大静摩擦力,即Mg2F。物块向右匀速运动时,物块处于平衡状态,绳子中的张力TMg2F,A错误;小环碰到钉子时,物块做圆周运动,根据牛顿第二定律和向心力公式有:TMg,TMg,所以绳子中的张力与2F大小关系不确定,B错误;物块运动到达最高点,根据动能定理有Mgh0Mv2,则最大高度h,C错误;环碰到钉子后,物块做圆周运动,在最低点,物块与夹子间的静摩擦力达到最大值时速度最大,由牛顿第二定律知:2FMg,故最大速度v ,D正确。4. (2018广东佛山质检一)图示为公路自行车赛中运动员在水平路面上急转弯的情景,运动员在通过弯道时如果控制不当会发生侧滑而摔离正常比赛路线,将运动员与自行车看做一个整体,下列论述正确的是()A运动员转弯所需向心力由地面对车轮的支持力与重力的合力提供B运动员转弯所需向心力由地面对车轮的摩擦力提供C发生侧滑是因为运动员受到的合外力方向背离圆心D发生侧滑是因为运动员受到的合外力大于所需的向心力答案B解析运动员转弯所需的向心力由地面对车轮的摩擦力提供,则A错误,B正确。发生侧滑而做离心运动的原因是自行车所受的摩擦力小于所需要的向心力,故C、D错误。5(2018甘肃兰化一中模拟) 如图所示,“旋转秋千”中座椅(可视为质点)通过轻质缆绳悬挂在旋转圆盘上。当旋转圆盘以角速度匀速转动时,不计空气阻力,缆绳延长线与竖直中心轴相交于O点,夹角为,O点到座椅的竖直高度为h,则当增大时()Ah不变 B减小C2h不变 D2h增大答案C解析对座椅受力分析如图所示,根据牛顿第二定律可得mgtanm2htan,解得:g2h,则当增大时,h减小,变大,2h不变,故选C。配套课时作业时间:60分钟满分:100分一、选择题(本题共11小题,每小题7分,共77分。其中18为单选,911为多选)1. (2018南宁摸底)如图所示,质量相等的A、B两物体紧贴在匀速转动的圆筒的竖直内壁上,随圆筒一起做匀速圆周运动,则下列关系中正确的是()A线速度vAvBB角速度ABC受到的合力FA合FB合D受到的摩擦力FfAFfB答案B解析质量相等的A、B两物体随圆筒一起做匀速圆周运动,两者的角速度相等,B正确;根据角速度与线速度的关系vr,A物体的线速度大于B物体的线速度,A错误;由向心加速度公式a2r和牛顿第二定律F合ma可知,A物体所受的合力大于B物体所受的合力,C错误;在竖直方向,它们所受的摩擦力等于重力,由于二者质量相等,重力相等,所以它们受到的摩擦力相等,D错误。2. (2018朔州模拟)如图所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法不正确的是()AB的向心力是A的向心力的2倍B盘对B的摩擦力是B对A的摩擦力的2倍CA、B都有沿半径向外滑动的趋势D若B先滑动,则B对A的动摩擦因数A大于盘对B的动摩擦因数B答案A解析A、B两物块的角速度大小相等,根据Fnmr2,转动半径相等,质量相等,所以向心力相等,A错误;对AB整体分析,FfB2mr2,对A分析,有:FfAmr2,知盘对B的摩擦力是B对A的摩擦力的2倍,B正确;A所受的静摩擦力方向指向圆心,可知A有沿半径向外滑动的趋势,B受到盘的静摩擦力方向指向圆心,可知B有沿半径向外滑动的趋势,C正确;对AB整体分析,B2mg2mr,解得:B,对A分析,Amgmr,解得A,因为B先滑动,可知B先达到临界角速度,可知B的临界角速度较小,即B0,由牛顿第三定律知,小球对杆的弹力方向向上,C正确;同理v22b时,解得小球受到的弹力与重力大小相等,D正确。8. 如图所示,轻绳的一端固定在O点,另一端系一质量为m的小球(可视为质点)。当小球在竖直平面内沿逆时针方向做圆周运动时,通过传感器测得轻绳拉力T、轻绳与竖直线OP的夹角满足关系式Tabcos,式中a、b为常数。若不计空气阻力,则当地的重力加速度为()A. B. C. D.答案D解析设小球在最低点,即0时的速度为v1,拉力为T1,在最高点,即180时的速度为v2,拉力为T2,在最低点有:T1mgm,在最高点有:T2mgm,根据动能定理有:2mgRmvmv,可得T1T26mg,对比Tabcos,有T1ab,T2ab,故T1T22b,即6mg2b,故当地重力加速度g,D正确。9. (2018河北名校联盟质检一)如图为过山车及其轨道简化模型,过山车车厢内固定一安全座椅,座椅上乘坐假人,并系好安全带,安全带恰好未绷紧,不计一切阻力,以下判断正确的是()A过山车在圆轨道上做匀速圆周运动B过山车在圆轨道最高点时的速度至少应等于C过山车在圆轨道最低点时假人处于失重状态D若过山车能顺利通过整个圆轨道,在最高点时安全带对假人一定无作用力答案BD解析过山车在竖直圆轨道上做圆周运动,不计一切阻力,只有重力做功,则机械能守恒,过山车动能不断变化,速度也在变,故不可能做匀速圆周运动,A错误;在最高点,过山车和假人水平方向不受力,重力和轨道对过山车的弹力的合力提供向心力,当弹力为零时,速度最小,则mgm,解得过山车在圆轨道最高点时的速度至少为v,B正确;在最低点时,重力和轨道对过山车的弹力的合力提供向心力,加速度方向向上,假人处于超重状态,C错误;若过山车顺利通过整个圆轨道,在最高点速度最低时假人的重力恰好提供向心力,若在最高点速度大于,则座椅对假人有向下的支持力,安全带对假人无作用力,D正确。10. (2018福建厦门质检)如图所示,金属块Q放在带光滑小孔的水平桌面上,一根穿过小孔的细线,上端固定在Q上,下端拴一个小球。小球在某一水平面内做匀速圆周运动(圆锥摆),细线与竖直方向成30角(图中P位置)。现使小球在更高的水平面上做匀速圆周运动。细线与竖直方向成60角(图中P位置)。两种情况下,金属块Q都静止在桌面上的同一点,则后一种情况与原来相比较,下面判断正确的是()AQ受到桌面的静摩擦力大小不变B小球运动的角速度变大C细线所受的拉力之比为21D小球向心力大小之比为31答案BD解析对小球受力分析如图所示,则有T,向心力Fnmgtanm2Lsin,得角速度,当小球做圆周运动的平面升高时,增大,cos减小,则拉力T增大,角速度增大,金属块Q受到的静摩擦力等于细线的拉力大小,则后一种情况与原来相比,Q受到桌面的静摩擦力增大,故A错误,B正确。细线与竖直方向成30角时拉力T1,细线与竖直方向成60角时拉力T22mg,所以T2T11,故C错误。细线与竖直方向成30角时向心力Fn1mgtan30mg,细线与竖直方向成60角时向心力Fn2mgtan60mg,所以Fn2Fn131,所以D正确。11. (2018湖北黄冈期末)如图所示,置于竖直面内的光滑金属圆环半径为r,质量为m的带孔小球穿于环上,同时有一长为r的细绳一端系于圆环最高点,另一端系于小球上,当圆环以角速度(0)绕竖直直径转动时()A细绳对小球的拉力可能为零B细绳和金属圆环对小球的作用力大小可能相等C细绳对小球拉力与小球的重力大小不可能相等D当 时,金属圆环对小球的作用力为零答案CD解析因为圆环光滑,小球不受摩擦力,小球受重力、绳子的拉力、环对小球的弹力,根据几何关系可知,此时细绳与竖直方向的夹角为60,当圆环旋转时,小球绕竖直轴做圆周运动,则有Tcos60Ncos60mg,Tsin60Nsin60m2rsin60,解得Tmgm2r,Nmgm2r,当时,金属圆环对小球的作用力N0。综上可知C、D正确,A、B错误。二、非选择题(本题共2小题,共23分)12(10分) 如图所示,一质量为m0.5 kg 的小球,用长为0.4 m的轻绳拴着在竖直平面内做圆周运动。g取 10 m/s2,求:(1)小球要做完整的圆周运动,在最高点的速度至少为多大?(2)当小球在最高点的速度为4 m/s时,轻绳拉力多大?(3)若轻绳能承受的最大张力为45 N,小球的最大速度不能超过多大?答案(1)2 m/s(2)15 N(3)4 m/s解析(1)在最高点,对小球受力分析如图甲,由牛顿第二定律得mgF1由于轻绳对小球只能提供指向圆心的拉力,即F1不可能取负值,亦即F10联立得v代入数值得v2 m/s所以,小球要做完整的圆周运动,在最高点的速度至少为2 m/s。(2)设当小球在最高点的速度为v24 m/s时,绳子施加的拉力为F2,由牛顿第二定律有mgF2m,代入数据解得F215 N。(3)由分析可知,小球在最低点张力最大,速度最大,对小球受力分析如图乙,由牛顿第二定律得F3mg将F345 N代入得v34 m/s即小球的最大速度不能超过4 m/s。13(13分) 半径为R的水平圆台可绕通过圆心O的竖直光滑细轴CC转动,如图所示。圆台上沿相互垂直的两个半径方向刻有槽,质量为mA的物体A放在一个槽内,A与槽底间的动摩擦因数为0,质量为mB的物体B放在另一个槽内,此槽是光滑的,A、B间用一长为l(lR)且不可伸长的轻绳绕过细轴相连。设物体A与槽的侧面之间没有作用力,最大静摩擦力等于滑动摩擦力,试求:(1)当圆台做匀速转动,A物体与圆盘之间刚好没有摩擦力且A、B两物体相对圆台不动时,A到圆心的距离x为多大?此时的转动角速度应为多大?(2)当圆台做匀速转动,A、B两物体相对圆台不动且A物体与圆台间有摩擦时,转动角速度和A到圆心的距离x应满足的条件。答案(1)l可取任意值(2)当lxl时, ;当0xl时, 解析(1)设绳上张力为F,当A、B相对于转盘静止且恰无摩擦力时,由牛顿第二定律得:对A:FmA2x对B:FmB2(lx)解得:xl此时可取任意值。(2)当lxl时,A有沿半径向外滑动的趋势,受到的静摩擦力沿半径指向圆心,则由牛顿第二定律得:对A:F0mAgmA2x对B:FmB2(lx)解得: ;当0xl时,A有沿半径向内滑动的趋势,受到的静摩擦力沿半径背向圆心,则由牛顿第二定律得:对A:F0mAgmA2x对B:FmB2(lx)解得: 。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!