资源描述
8.6空间向量在立体几何中的应用考纲解读考点内容解读要求高考示例常考题型预测热度空间向量及其应用理解直线的方向向量与平面的法向量;能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理);能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用掌握2017浙江,9;2017课标全国,19;2017天津,17;2017江苏,22;2017北京,16;2017浙江,19;2017山东,17;2016课标全国,19;2016山东,17;2016浙江,17;2015课标,19;2014陕西,17;2013课标全国,18解答题分析解读1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.五年高考考点空间向量及其应用1.(2017江苏,22,10分)如图,在平行六面体ABCD-A1B1C1D1中,AA1平面ABCD,且AB=AD=2,AA1=,BAD=120.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.解析在平面ABCD内,过点A作AEAD,交BC于点E.因为AA1平面ABCD,所以AA1AE,AA1AD.如图,以,为正交基底建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=,BAD=120,则A(0,0,0),B(,-1,0),D(0,2,0),E(,0,0),A1(0,0,),C1(,1,).(1)=(,-1,-),=(,1,),则cos=-,因此异面直线A1B与AC1所成角的余弦值为.(2)平面A1DA的一个法向量为=(,0,0).设m=(x,y,z)为平面BA1D的法向量,又=(,-1,-),=(-,3,0),则即不妨取x=3,则y=,z=2,所以m=(3,2)为平面BA1D的一个法向量,从而cos=.设二面角B-A1D-A的大小为,则|cos |=.因为0,所以sin =.因此二面角B-A1D-A的正弦值为.2.(2017北京,16,14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.解析(1)设AC,BD交点为E,连接ME.因为PD平面MAC,平面MAC平面PDB=ME,所以PDME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)取AD的中点O,连接OP,OE.因为PA=PD,所以OPAD.又因为平面PAD平面ABCD,且OP平面PAD,所以OP平面ABCD.因为OE平面ABCD,所以OPOE.因为ABCD是正方形,所以OEAD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即令x=1,则y=1,z=.于是n=(1,1,).平面PAD的一个法向量为p=(0,1,0).所以cos=.由题意知二面角B-PD-A为锐角,所以它的大小为.(3)由题意知M,C(2,4,0),=.设直线MC与平面BDP所成角为,则sin =|cos|=.所以直线MC与平面BDP所成角的正弦值为.3.(2017课标全国,19,12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,BAD=ABC=90,E是PD的中点.(1)证明:直线CE平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45,求二面角M-AB-D的余弦值.解析(1)取PA的中点F,连接EF,BF.因为E是PD的中点,所以EFAD,EF=AD.由BAD=ABC=90得BCAD,又BC=AD,所以EFBC,四边形BCEF是平行四边形,CEBF,又BF平面PAB,CE平面PAB,故CE平面PAB.(2)由已知得BAAD,以A为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,),=(1,0,-),=(1,0,0).设M(x,y,z)(0x1),则=(x-1,y,z),=(x,y-1,z-).因为BM与底面ABCD所成的角为45,而n=(0,0,1)是底面ABCD的法向量,所以|cos|=sin 45,=,即(x-1)2+y2-z2=0.又M在棱PC上,设=,则x=,y=1,z=-.由,解得(舍去),或所以M,从而=.设m=(x0,y0,z0)是平面ABM的法向量,则即所以可取m=(0,-,2).于是cos=.易知所求二面角为锐角.因此二面角M-AB-D的余弦值为.4.(2016课标全国,19,12分)如图,四棱锥P-ABCD中,PA底面ABCD,ADBC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN平面PAB;(2)求直线AN与平面PMN所成角的正弦值.解析(1)由已知得AM=AD=2.取BP的中点T,连接AT,TN,由N为PC中点知TNBC,TN=BC=2.(3分)又ADBC,故TNAM,故四边形AMNT为平行四边形,于是MNAT.因为AT平面PAB,MN平面PAB,所以MN平面PAB.(6分)(2)取BC的中点E,连接AE.由AB=AC得AEBC,从而AEAD,且AE=.以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,=(0,2,-4),=,=.设n=(x,y,z)为平面PMN的法向量,则即(10分)可取n=(0,2,1).于是|cos|=.即直线AN与平面PMN所成角的正弦值为.(12分)教师用书专用(525)5.(2017浙江,9,5分)如图,已知正四面体D-ABC(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,AP=PB,=2.分别记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为,则() A.B.C.D.答案B6.(2014广东,5,5分)已知向量a=(1,0,-1),则下列向量中与a成60夹角的是()A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)答案B7.(2015浙江,15,6分)已知e1,e2是空间单位向量,e1e2=.若空间向量b满足be1=2,be2=,且对于任意x,yR,|b-(xe1+ye2)|b-(x0e1+y0e2)|=1(x0,y0R),则x0=,y0=,|b|=.答案1;2;28.(2017山东,17,12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120得到的,G是的中点.(1)设P是上的一点,且APBE,求CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.解析(1)因为APBE,ABBE,AB,AP平面ABP,ABAP=A,所以BE平面ABP,又BP平面ABP,所以BEBP,又EBC=120,因此CBP=30.(2)解法一:取的中点H,连接EH,GH,CH.因为EBC=120,所以四边形BEHC为菱形,所以AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EMAG,CMAG,所以EMC为所求二面角的平面角.又AM=1,所以EM=CM=2.在BEC中,由于EBC=120,由余弦定理得EC2=22+22-222cos 120=12,所以EC=2,因此EMC为等边三角形,故所求的角为60.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,3),C(-1,0),故=(2,0,-3),=(1,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos=.易知所求角为锐二面角,因此所求的角为60.9.(2015课标,19,12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面所成角的正弦值.解析(1)交线围成的正方形EHGF如图:(2)作EMAB,垂足为M,则AM=A1E=4,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH=6,所以AH=10.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),=(10,0,0),=(0,-6,8).设n=(x,y,z)是平面EHGF的法向量,则即所以可取n=(0,4,3).又=(-10,4,8),故|cos|=.所以AF与平面EHGF所成角的正弦值为.10.(2016山东,17,12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点.求证:GH平面ABC;(2)已知EF=FB=AC=2,AB=BC.求二面角F-BC-A的余弦值.解析(1)证明:设FC中点为I,连接GI,HI.在CEF中,因为点G是CE的中点,所以GIEF.又EFOB,所以GIOB.在CFB中,因为H是FB的中点,所以HIBC.又HIGI=I,所以平面GHI平面ABC.因为GH平面GHI,所以GH平面ABC.(2)解法一:连接OO,则OO平面ABC.又AB=BC,且AC是圆O的直径,所以BOAC.以O为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B(0,2,0),C(-2,0,0),所以=(-2,-2,0),过点F作FM垂直OB于点M.所以FM=3,可得F(0,3).故=(0,-,3).设m=(x,y,z)是平面BCF的法向量.由可得可得平面BCF的一个法向量m=.因为平面ABC的一个法向量n=(0,0,1),所以cos=.所以二面角F-BC-A的余弦值为.解法二:连接OO.过点F作FM垂直OB于点M.则有FMOO.又OO平面ABC,所以FM平面ABC.可得FM=3.过点M作MN垂直BC于点N,连接FN.可得FNBC,从而FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BMsin 45=.从而FN=,可得cosFNM=.所以二面角F-BC-A的余弦值为.11.(2016浙江,17,15分)如图,在三棱台ABC-DEF中,平面BCFE平面ABC,ACB=90,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.解析(1)延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE平面ABC,且ACBC,所以,AC平面BCK,因此,BFAC.又因为EFBC,BE=EF=FC=1,BC=2,所以BCK为等边三角形,且F为CK的中点,则BFCK.所以BF平面ACFD.(2)解法一:过点F作FQAK于Q,连接BQ.因为BF平面ACK,所以BFAK,则AK平面BQF,所以BQAK.所以,BQF是二面角B-AD-F的平面角.在RtACK中,AC=3,CK=2,得FQ=.在RtBQF中,FQ=,BF=,得cosBQF=.所以,二面角B-AD-F的平面角的余弦值为.解法二:如图,延长AD,BE,CF相交于一点K,则BCK为等边三角形.取BC的中点O,则KOBC,又平面BCFE平面ABC,所以,KO平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立空间直角坐标系O-xyz.由题意得B(1,0,0),C(-1,0,0),K(0,0,),A(-1,-3,0),E,F.因此,=(0,3,0),=(1,3,),=(2,3,0).设平面ACK的法向量为m=(x1,y1,z1),平面ABK的法向量为n=(x2,y2,z2).由得取m=(,0,-1);由得取n=(3,-2,).于是,cos=.所以,二面角B-AD-F的平面角的余弦值为.12.(2015陕西,18,12分)如图1,在直角梯形ABCD中,ADBC,BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将ABE沿BE折起到A1BE的位置,如图2.(1)证明:CD平面A1OC;(2)若平面A1BE平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.解析(1)证明:在题图1中,因为AB=BC=1,AD=2,E是AD的中点,BAD=,所以BEAC.即在题图2中,BEOA1,BEOC,从而BE平面A1OC,又CDBE,所以CD平面A1OC.(2)因为平面A1BE平面BCDE,又由(1)知,BEOA1,BEOC,所以A1OC为二面角A1-BE-C的平面角,所以A1OC=.如图,以O为原点,建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BCED,所以B,E,A1,C,得=,=,=(-,0,0).设平面A1BC的法向量n1=(x1,y1,z1),平面A1CD的法向量n2=(x2,y2,z2),平面A1BC与平面A1CD夹角为,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos =|cos|=,即平面A1BC与平面A1CD夹角的余弦值为.13.(2015四川,18,12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN平面BDH;(3)求二面角A-EG-M的余弦值.解析(1)点F,G,H的位置如图所示.(2)证明:连接BD,设O为BD的中点.因为M,N分别是BC,GH的中点,所以OMCD,且OM=CD,HNCD,且HN=CD.所以OMHN,OM=HN.所以MNHO是平行四边形,从而MNOH.又MN平面BDH,OH平面BDH,所以MN平面BDH.(3)解法一:连接AC,过M作MPAC于P.在正方体ABCD-EFGH中,ACEG,所以MPEG.过P作PKEG于K,连接KM,所以EG平面PKM,从而KMEG.所以PKM是二面角A-EG-M的平面角.设AD=2,则CM=1,PK=2.在RtCMP中,PM=CMsin 45=.在RtPKM中,KM=.所以cosPKM=.即二面角A-EG-M的余弦值为.解法二:如图,以D为坐标原点,分别以,方向为x,y,z轴的正方向,建立空间直角坐标系D-xyz.设AD=2,则M(1,2,0),G(0,2,2),E(2,0,2),O(1,1,0),所以,=(2,-2,0),=(-1,0,2).设平面EGM的法向量为n1=(x,y,z),由得取x=2,得n1=(2,2,1).在正方体ABCD-EFGH中,DO平面AEGC,则可取平面AEG的一个法向量为n2=(1,1,0),所以cos=,故二面角A-EG-M的余弦值为.14.(2015江苏,22,10分)如图,在四棱锥P-ABCD中,已知PA平面ABCD,且四边形ABCD为直角梯形,ABC=BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.解析以,为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)易知AD平面PAB,所以是平面PAB的一个法向量,=(0,2,0).因为=(1,1,-2),=(0,2,-2),设平面PCD的法向量为m=(x,y,z),则m=0,m=0,即令y=1,解得z=1,x=1.所以m=(1,1,1)是平面PCD的一个法向量.从而cos=,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为=(-1,0,2),设=(-,0,2)(01),又=(0,-1,0),则=+=(-,-1,2),又=(0,-2,2),从而cos=.设1+2=t,t1,3,则cos2 =.当且仅当t=,即=时,|cos|的最大值为.因为y=cos x在上是减函数,所以此时直线CQ与DP所成的角取得最小值.又因为BP=,所以BQ=BP=.15.(2015福建,17,13分)如图,在几何体ABCDE中,四边形ABCD是矩形,AB平面BEC,BEEC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.解析解法一:(1)证明:如图,取AE的中点H,连接HG,HD,又G是BE的中点,所以GHAB,且GH=AB.又F是CD的中点,所以DF=CD.由四边形ABCD是矩形得,ABCD,AB=CD,所以GHDF,且GH=DF,从而四边形HGFD是平行四边形,所以GFDH.又DH平面ADE,GF平面ADE,所以GF平面ADE.(2)如图,在平面BEC内,过B点作BQEC.因为BECE,所以BQBE.又因为AB平面BEC,所以ABBE,ABBQ.以B为原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB平面BEC,所以=(0,0,2)为平面BEC的法向量.设n=(x,y,z)为平面AEF的法向量.又=(2,0,-2),=(2,2,-1),由得取z=2,得n=(2,-1,2).从而cos=,所以平面AEF与平面BEC所成锐二面角的余弦值为.解法二:(1)证明:如图,取AB中点M,连接MG,MF.又G是BE的中点,可知GMAE.又AE平面ADE,GM平面ADE,所以GM平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MFAD.又AD平面ADE,MF平面ADE,所以MF平面ADE.又因为GMMF=M,GM平面GMF,MF平面GMF,所以平面GMF平面ADE.因为GF平面GMF,所以GF平面ADE.(2)同解法一.16.(2014陕西,17,12分)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角的正弦值.解析(1)证明:由该四面体的三视图可知,BDDC,BDAD,ADDC,BD=DC=2,AD=1.由题设,知BC平面EFGH,平面EFGH平面BDC=FG,平面EFGH平面ABC=EH,BCFG,BCEH,FGEH.同理EFAD,HGAD,EFHG,四边形EFGH是平行四边形.又ADDC,ADBD,BDDC=D,AD平面BDC,ADBC,EFFG,四边形EFGH是矩形.(2)解法一:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),=(0,0,1),=(-2,2,0),=(-2,0,1).设平面EFGH的法向量n=(x,y,z),EFAD,FGBC,n=0,n=0,得取n=(1,1,0),sin =|cos|=.解法二:以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),E是AB的中点,F,G分别为BD,DC的中点,得E,F(1,0,0),G(0,1,0).=,=(-1,1,0),=(-2,0,1).设平面EFGH的法向量n=(x,y,z),则n=0,n=0,得取n=(1,1,0),sin =|cos|=.17.(2014安徽,20,13分)如图,四棱柱ABCD-A1B1C1D1中,A1A底面ABCD.四边形ABCD为梯形,ADBC,且AD=2BC.过A1,C,D三点的平面记为,BB1与的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面所分成上下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面与底面ABCD所成二面角的大小.解析(1)证明:因为BQAA1,BCAD,BCBQ=B,ADAA1=A,所以平面QBC平面A1AD.从而平面A1CD与这两个平面的交线相互平行,即QCA1D.故QBC与A1AD的对应边相互平行,于是QBCA1AD.所以=,即Q为BB1的中点.(2)如图1,连接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面所分成上下两部分的体积分别为V上和V下,设BC=a,则AD=2a.图1=2ahd=ahd,VQ-ABCD=dh=ahd,所以V下=+VQ-ABCD=ahd,又=ahd,所以V上=-V下=ahd-ahd=ahd,故=.(3)解法一:如图1,连接AC,在ADC中,作AEDC,垂足为E,连接A1E.因为DEAA1,且AA1AE=A,所以DE平面AEA1,于是DEA1E.所以AEA1为平面与底面ABCD所成二面角的平面角.因为BCAD,AD=2BC,所以SADC=2SBCA.又因为梯形ABCD的面积为6,DC=2,所以SADC=4,AE=4.于是tanAEA1=1,AEA1=.故平面与底面ABCD所成二面角的大小为.解法二:如图2,以D为原点,的方向分别为x轴和z轴正方向建立空间直角坐标系.图2设CDA=.由(2)知|=a.因为S四边形ABCD=2sin =6,所以a=.从而C(2cos ,2sin ,0),A1,所以=(2cos ,2sin ,0),=.设平面A1DC的法向量为n=(x,y,1),由得x=-sin ,y=cos ,所以n=(-sin ,cos ,1).又因为平面ABCD的一个法向量为m=(0,0,1),所以cos=,易知平面与底面ABCD所成二面角的平面角为锐角,故平面与底面ABCD所成二面角的大小为.18.(2014天津,17,13分)如图,在四棱锥P-ABCD中,PA底面ABCD,ADAB,ABDC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)证明BEDC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BFAC,求二面角F-AB-P的余弦值.解析解法一:依题意,以点A为原点建立空间直角坐标系(如图),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2).由E为棱PC的中点,得E(1,1,1).(1)证明:向量=(0,1,1),=(2,0,0),故=0.所以BEDC.(2)向量=(-1,2,0),=(1,0,-2).设n=(x,y,z)为平面PBD的法向量,则即不妨令y=1,可得n=(2,1,1)为平面PBD的一个法向量.于是有cos=.所以直线BE与平面PBD所成角的正弦值为.(3)向量=(1,2,0),=(-2,-2,2),=(2,2,0),=(1,0,0).由点F在棱PC上,设=,01.故=+=+=(1-2,2-2,2).由BFAC,得=0,因此,2(1-2)+2(2-2)=0,解得=.即=.设n1=(x,y,z)为平面FAB的法向量,则即不妨令z=1,可得n1=(0,-3,1)为平面FAB的一个法向量.取平面ABP的法向量n2=(0,1,0),则cos=-.易知,二面角F-AB-P是锐角,所以其余弦值为.解法二:(1)证明:如图,取PD的中点M,连接EM,AM.由于E,M分别为PC,PD的中点,故EMDC,且EM=DC,又由已知,可得EMAB且EM=AB,故四边形ABEM为平行四边形,所以BEAM.因为PA底面ABCD,故PACD,而CDDA,从而CD平面PAD,因为AM平面PAD,于是CDAM,又BEAM,所以BECD.(2)连接BM,由(1)有CD平面PAD,得CDPD,而EMCD,故PDEM.又因为AD=AP,M为PD的中点,故PDAM,可得PDBE,所以PD平面BEM,故平面BEM平面PBD.所以直线BE在平面PBD内的射影为直线BM,而BEEM,可得EBM为锐角,故EBM为直线BE与平面PBD所成的角.依题意,有PD=2,而M为PD的中点,可得AM=,进而BE=.故在直角三角形BEM中,tanEBM=,因此sinEBM=.所以直线BE与平面PBD所成角的正弦值为.(3)如图,在PAC中,过点F作FHPA交AC于点H.因为PA底面ABCD,故FH底面ABCD,从而FHAC.又BFAC,得AC平面FHB,因此ACBH.在底面ABCD内,可得CH=3HA,从而CF=3FP.在平面PDC内,作FGDC交PD于点G,于是DG=3GP.由于DCAB,故GFAB,所以A,B,F,G四点共面.由ABPA,ABAD,得AB平面PAD,故ABAG.所以PAG为二面角F-AB-P的平面角.在PAG中,PA=2,PG=PD=,APG=45,由余弦定理可得AG=,cosPAG=.所以二面角F-AB-P的余弦值为.19.(2014四川,18,12分)三棱锥A-BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MNNP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值.解析(1)证明:如图,取BD中点O,连接AO,CO.由侧视图及俯视图知,ABD,BCD为正三角形,因此AOBD,OCBD.因为AO,OC平面AOC,且AOOC=O,所以BD平面AOC.又因为AC平面AOC,所以BDAC.取BO的中点H,连接NH,PH.又M,N分别为线段AD,AB的中点,所以NHAO,MNBD.因为AOBD,所以NHBD.因为MNNP,所以NPBD.因为NH,NP平面NHP,且NHNP=N,所以BD平面NHP.又因为HP平面NHP,所以BDHP.又OCBD,HP平面BCD,OC平面BCD,所以HPOC.因为H为BO中点,故P为BC中点.(2)解法一:如图,作NQAC于Q,连接MQ.由(1)知,NPAC,所以NQNP.因为MNNP,所以MNQ为二面角A-NP-M的一个平面角.由(1)知,ABD,BCD是边长为2的正三角形,所以AO=OC=.由俯视图可知,AO平面BCD.因为OC平面BCD,所以AOOC.因此在等腰RtAOC中,AC=.作BRAC于R.在ABC中,AB=BC,所以BR=.因为在平面ABC内,NQAC,BRAC,所以NQBR.又因为N为AB的中点,所以Q为AR的中点,因此NQ=.同理,可得MQ=,所以在等腰MNQ中,cosMNQ=.故二面角A-NP-M的余弦值是.解法二:由俯视图及(1)可知,AO平面BCD.因为OC,OB平面BCD,所以AOOC,AOOB.又OCOB,所以直线OA,OB,OC两两垂直.如图,以O为坐标原点,以,的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz.则A(0,0,),B(1,0,0),C(0,0),D(-1,0,0).因为M,N分别为线段AD,AB的中点,又由(1)知,P为线段BC的中点,所以M,N,P.于是=(1,0,-),=(-1,0),=(1,0,0),=.设平面ABC的法向量n1=(x1,y1,z1),则即有 从而取z1=1,则x1=,y1=1,所以n1=(,1,1).设平面MNP的法向量n2=(x2,y2,z2),则即有从而取z2=1,所以n2=(0,1,1).设二面角A-NP-M的大小为,则cos =.故二面角A-NP-M的余弦值是.20.(2013课标全国,18,12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(1)证明:BC1平面A1CD;(2)求二面角D-A1C-E的正弦值.解析(1)证法一:连接AC1交A1C于点F,则F为AC1的中点.又D是AB的中点,连接DF,则BC1DF.因为DF平面A1CD,BC1平面A1CD,所以BC1平面A1CD.证法二:由AC=CB=AB得,ACBC.以C为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系C-xyz.设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),=(1,1,0),=(0,2,1),=(2,0,2).设n=(x1,y1,z1)是平面A1CD的法向量,则即可取n=(1,-1,-1).=(0,0,2)-(0,2,0)=(0,-2,2).从而n=(1,-1,-1)(0,-2,2)=0.BC1平面A1CD.(2)设m=(a,b,c)是平面A1CE的法向量,则即可取m=(2,1,-2).从而cos=,故sin=.即二面角D-A1C-E的正弦值为.21.(2013湖南,19,12分)如图,在直棱柱ABCD-A1B1C1D1中,ADBC,BAD=90,ACBD,BC=1,AD=AA1=3.(1)证明:ACB1D;(2)求直线B1C1与平面ACD1所成角的正弦值.解析解法一:(1)如图1,因为BB1平面ABCD,AC平面ABCD,所以ACBB1.图1又ACBD,所以AC平面BB1D,而B1D平面BB1D,所以ACB1D.(2)因为B1C1AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为).如图1,连接A1D.因为棱柱ABCD-A1B1C1D1是直棱柱,且B1A1D1=BAD=90,所以A1B1平面ADD1A1,从而A1B1AD1.又AD=AA1=3,所以四边形ADD1A1是正方形,于是A1DAD1.故AD1平面A1B1D,于是AD1B1D.由(1)知,ACB1D,所以B1D平面ACD1,故ADB1=90-.在直角梯形ABCD中,因为ACBD,所以BAC=ADB.从而RtABCRtDAB,故=,即AB=.连接AB1.易知AB1D是直角三角形,且B1D2=B+BD2=B+AB2+AD2=21,即B1D=.在RtAB1D中,cosADB1=,即cos(90-)=.从而sin =.即直线B1C1与平面ACD1所成角的正弦值为.解法二:(1)易知,AB,AD,AA1两两垂直.如图2,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB=t,则相关各点的坐标为A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3).图2从而=(-t,3,-3),=(t,1,0),=(-t,3,0).因为ACBD,所以=-t2+3+0=0,解得t=或t=-(舍去).于是=(-,3,-3),=(,1,0).因为=-3+3+0=0,所以,即ACB1D.(2)由(1)知,=(0,3,3),=(,1,0),=(0,1,0).设n=(x,y,z)是平面ACD1的一个法向量,则即令x=1,则n=(1,-,).设直线B1C1与平面ACD1所成角为,则sin =|cos|=.即直线B1C1与平面ACD1所成角的正弦值为.22.(2013重庆,19,13分)如图,四棱锥P-ABCD中,PA底面ABCD,BC=CD=2,AC=4,ACB=ACD=,F为PC的中点,AFPB.(1)求PA的长;(2)求二面角B-AF-D的正弦值.解析(1)如图,连接BD交AC于O,因为BC=CD,即BCD为等腰三角形,又AC平分BCD,故ACBD.以O为坐标原点,的方向分别为x轴,y轴,z轴的正方向,建立空间直角坐标系O-xyz,则OC=CDcos=1,而AC=4,得AO=AC-OC=3,又OD=CDsin=,故A(0,-3,0),B(,0,0),C(0,1,0),D(-,0,0).因PA底面ABCD,可设P(0,-3,z),由F为PC边中点,得F.又=,=(,3,-z),因AFPB,故=0,即6-=0,z=2(舍去-2),所以|=2.(2)由(1)知=(-,3,0),=(,3,0),=(0,2,).设平面FAD的法向量为n1=(x1,y1,z1),平面FAB的法向量为n2=(x2,y2,z2),由n1=0,n1=0,得因此可取n1=(3,-2).由n2=0,n2=0,得故可取n2=(3,-,2).从而法向量n1,n2的夹角的余弦值为cos=.故二面角B-AF-D的正弦值为.23.(2013天津,17,13分)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A底面ABCD,ABDC,ABAD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1CE;(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.解析解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)证明:易得=(1,0,-1),=(-1,1,-1),于是=0,所以B1C1CE.(2)=(1,-2,-1).设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨令z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1CE,又CC1B1C1,可得B1C1平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos=-,从而sin=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1).设=(,),01,有=+=(,+1,).可取=(0,0,2)为平面ADD1A1的一个法向量.设为直线AM与平面ADD1A1所成的角,则sin =|cos|=.于是=,解得=,所以AM=.解法二:(1)证明:因为侧棱CC1底面A1B1C1D1,B1C1平面A1B1C1D1,所以CC1B1C1.经计算可得B1E=,B1C1=,EC1=,从而B1E2=B1+E,所以在B1EC1中,B1C1C1E,又CC1,C1E平面CC1E,CC1C1E=C1,所以B1C1平面CC1E,又CE平面CC1E,故B1C1CE.(2)过B1作B1GCE于点G,连接C1G.由(1)知B1C1CE,故CE平面B1C1G,得CEC1G,所以B1GC1为二面角B1-CE-C1的平面角.在CC1E中,由CE=C1E=,CC1=2,可得C1G=.在RtB1C1G中,B1G=,所以sinB1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MHED1于点H,可得MH平面ADD1A1,连接AH,AM,则MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在RtAHM中,有MH=x,AH=x.在RtC1D1E中,C1D1=1,ED1=,得EH=MH=x.在AEH中,AEH=135,AE=1,由AH2=AE2+EH2-2AEEHcos 135,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.24.(2013江西,19,12分)如图,四棱锥P-ABCD中,PA平面ABCD,E为BD的中点,G为PD的中点,DABDCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.(1)求证:AD平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.解析(1)在ABD中,因为E是BD中点,所以EA=EB=ED=AB=1,故BAD=,ABE=AEB=,因为DABDCB,所以EABECB,从而有FED=BEC=AEB=,所以FED=FEA,故EFAD,AF=FD,又因为PG=GD,所以FGPA.又PA平面ABCD,所以GFAD,故AD平面CFG.(2)以点A为坐标原点建立如图所示的坐标系,则A(0,0,0),B(1,0,0),C,D(0,0),P,故=,=,=.设平面BCP的法向量n1=(1,y1,z1),则解得即n1=.设平面DCP的法向量n2=(1,y2,z2),则解得即n2=(1,2).从而平面BCP与平面DCP的夹角的余弦值为cos =.25.(2013浙江,20,15分)如图,在四面体A-BCD中,AD平面BCD,BCCD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ平面BCD;(2)若二面角C-BM-D的大小为60,求BDC的大小.解析解法一:(1)取BD的中点O,在线段CD上取点F,使得DF=3FC,连接OP,OF,FQ.因为AQ=3QC,所以QFAD,且QF=AD.因为O,P分别为BD,BM的中点,所以OP是BDM的中位线,所以OPDM,且OP=DM.又点M为AD的中点,所以OPAD,且OP=AD.从而OPFQ,且OP=FQ,所以四边形OPQF为平行四边形,故PQOF.又PQ平面BCD,OF平面BCD,所以PQ平面BCD.(2)作CGBD于点G,作GHBM于点H,连接CH.因为AD平面BCD,CG平面BCD,所以ADCG,又CGBD,ADBD=D,故CG平面ABD,又BM平面ABD,所以CGBM.又GHBM,CGGH=G,故BM平面CGH,所以GHBM,CHBM.所以CHG为二面角C-BM-D的平面角,即CHG=60.设BDC=.在RtBCD中,CD=BDcos =2cos ,CG=CDsin =2cos sin ,BG=BCsin =2sin2.在RtBDM中,HG=.在RtCHG中,tanCHG=.所以tan =.从而=60.即BDC=60.解法二:(1)如图,取BD的中点O,以O为原点,OD,OP所在射线为y,z轴的正半轴,建立空间直角坐标系O-xyz.由题意知A(0,2),B(0,-,0),D(0,0).设点C的坐标为(x0,y0,0),因为=3,所以Q.因为M为AD的中点,故M(0,1).又P为BM的中点,故P,所以=.又平面BCD的一个法向量为u=(0,0,1),故u=0.又PQ平面BCD,所以PQ平面BCD.(2)设m=(x,y,z)为平面BMC的一个法向量.由=(-x0,-y0,1),=(0,2,1),知取y=-1,得m=.又平面BDM的一个法向量为n=(1,0,0),于是|cos|=,即=3.又BCCD,所以=0,故(-x0,-y0,0)(-x0,-y0,0)=0,即+=2.联立,解得(舍去)或所以tanBDC=.又BDC是锐角,所以BDC=60.三年模拟A组20162018年模拟基础题组考点空间向量及其应用1.(2017湖南五市十校3月联考,15)有公共边的等边三角形ABC和BCD所在平面互相垂直,则异面直线AB和CD所成角的余弦值为.答案2.(2018广东茂名模拟,18)如图,在矩形ABCD中,CD=2,BC=1,E,F是平面ABCD同一侧的两点,EAFC,AEAB,EA=2,DE=,FC=1.(1)证明:平面CDF平面ADE;(2)求二面角E-BD-F的正弦值.解析(1)证明:四边形ABCD是矩形,CDAD.AEAB,CDAB,CDAE.又ADAE=A,CD平面ADE.CD平面CDF,平面CDF平面ADE.(2)AD=BC=1,EA=2,DE=,DE2=AD2+AE2,AEAD.又AEAB,ABAD=A,AE平面ABCD.以D为坐标原点,建立如图所示的空间直角坐标系D-xyz,则D(0,0,0),B(1,2,0),F(0,2,1),E(1,0,2).=(1,2,0),=(0,2,1),设平面BDF的法向量为m=(x,y,z),令x=2,得m=(2,-1,2).同理可求得平面BDE的一个法向量为n=(2,-1,-1),cos=,sin=.故二面角E-BD-F的正弦值为.3.(2017河南洛阳二模,19)已知三棱锥A-BCD,AD平面BCD,BDCD,AD=BD=2,CD=2,E,F分别是AC,BC的中点,P为线段BC上一点,且CP=2PB.(1)求证:APDE;(2)求直线AC与平面DEF所成角的正弦值.解析(1)证明:作PGBD交CD于G.连接AG.=2,GD=CD=.AD平面BCD,ADDC,在ADG中,tanGAD=,DAG=30,在RtADC中,AC2=AD2+CD2=4+12=16,AC=4,又E为AC的中点,DE=AE=2,又AD=2,ADE=60,AGDE.AD面BCD,ADBD,又BDCD,ADCD=D,BD面ADC,PG面ADC,PGDE.又AGPG=G,DE面AGP,又AP面AGP,APDE.(2)以D为坐标原点,直线DB、DC、DA所在直线分别为x轴、y轴、z轴建立空间直角坐标系D-xyz,则D(0,0,0),A(0,0,2),B(2,0,0),C(0,2,0),E(0,1),F(1,0),=(1,0),=(0,1),=(0,2,-2).设平面DEF的法向量为n=(x,y,z),则即令x=3,则n=(3,-,3).设直线AC与平面DEF所成角为,则sin =|cos|=,所以AC与平面DEF所成角的正弦值为.B组20162018年模拟提升题组(满分:30分时间:30分钟)一、填空题(共5分)1.(人教A选21,三,3-2A,4,变式)已知在正方体ABCD-A1B1C1D1中,
展开阅读全文