中考数学总复习 第一编 教材知识梳理篇 第4章 图形的初步认识与三角形 第13讲 三角形及其性质(精讲)练习.doc

上传人:sh****n 文档编号:3386611 上传时间:2019-12-13 格式:DOC 页数:6 大小:215.50KB
返回 下载 相关 举报
中考数学总复习 第一编 教材知识梳理篇 第4章 图形的初步认识与三角形 第13讲 三角形及其性质(精讲)练习.doc_第1页
第1页 / 共6页
中考数学总复习 第一编 教材知识梳理篇 第4章 图形的初步认识与三角形 第13讲 三角形及其性质(精讲)练习.doc_第2页
第2页 / 共6页
中考数学总复习 第一编 教材知识梳理篇 第4章 图形的初步认识与三角形 第13讲 三角形及其性质(精讲)练习.doc_第3页
第3页 / 共6页
点击查看更多>>
资源描述
第十三讲三角形及其性质宜宾中考考情与预测宜宾考题感知与试做1.(xx宜宾中考)如图,BCDE,若A35,C24,则E等于(B)A.24 B.59 C.60 D.69(第1题图)(第2题图)2.(xx宜宾中考)如图,ABCD,AD与BC交于点E.若B35,D45,则AEC80.3.(xx宜宾模拟)如图,在ABC中,D、E分别为边BC、AB的中点,AD、CE相交于点O,AB8,BC10,AC6,则OD.宜宾中考考点梳理三角形的分类三角形三角形的边角关系1.三边关系:三角形的任何两边的和大于第三边,任何两边的差小于第三边.2.内角和与外角和三角形的内角和等于180;三角形的外角和等于360.3.内外角关系(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个与它不相邻的内角.三角形中的重要线段四线图示性质备注中线BDDC重心:三角形三条中线的交点高线ADBC,即ADBADC90垂心:三角形三条高线的交点角平分线12内心:三角形三条角平分线的交点,到三边的距离相等中位线DEBC且DEBC连接三角形两边中点的线段叫做中位线1.若一个三角形的两边长分别为2和4,则该三角形的周长可能是(C)A.6 B.7 C.11 D.122.如图,在ABC中,BACx,B2x,C3x,则BAD(B)A.145 B.150 C.155 D.160(第2题图)(第3题图)3.如图,在ABC中,点D在AB上,点E在AC上,DEBC.若A62,AED54,则B的大小为(C)A.54 B.62 C.64 D.744.如图,A、B两点被一座山隔开,M、N分别是AC、BC的中点,测量MN的长度为40 m,那么AB的长度为(B)A.40 m B.80 m C.160 m D.不能确定5.如图,在RtABC中,C90,AC3,BC4,ABC的平分线交边AC于点D,延长BD至点E,且BD2DE,连结AE.(1)求线段CD的长;(2)求ADE的面积.解:(1)设CDx.过点D作DHAB,垂足为点H.BD平分ABC,C90,DHDCx,则AD3x.C90,AC3,BC4,AB5,sin BAC,x,即CD;(2)由(1)可得SABDABDH5.BD2DE,2,SADE.中考典题精讲精练三角形三边的关系【典例1】已知a、b、c是ABC的三边长,a4,b6,设三角形的周长是x.(1)直接写出c及x的取值范围;(2)若x是小于18的偶数,求c的长;判断ABC的形状.【解析】(1)利用三角形三边关系可得出c的取值范围,进而得出答案;(2)根据偶数的定义,以及x的取值范围即可求解;利用等腰三角形的判定方法求解即可.【解答】解:(1)a4,b6,2c10,则12x20;(2)x为小于18的偶数,12x20,x16或x14.当x16时,c6;当x14时,c4;当c6时,bc,ABC为等腰三角形;当c4时,ac,ABC为等腰三角形.综上所述,ABC是等腰三角形.三角形内角和及外角的应用【典例2】(xx宜昌中考)如图,在RtABC中,ACB90,A40,ABC的外角CBD的平分线BE交AC的延长线于点E.(1)求CBE的度数;(2)过点D作DFBE,交AC的延长线于点F,求F的度数.【解析】(1)先根据“直角三角形的两个锐角互余”求出ABC90A50,由此求出外角CBD的度数.再根据角的平分线的定义即可求出CBE的度数;(2)先根据三角形内角和得出CEB的度数,再根据平行线的性质即可求出F的度数.【解答】解:(1)在RtABC中,ACB90,A40,ABC90A50,CBD130.BE是CBD的平分线,CBECBD65;(2)ACB90,CBE65,CEB906525.DFBE,FCEB25.三角形中重要线段的应用【典例3】如图,在ABC中,点M为BC的中点,AD平分BAC,且BDAD于点D,延长BD交AC于点N.若AB12,AC18,则MD的长为3.【解析】根据等腰三角形“三线合一”的性质可得BDDN,ABAN,再求出CN,然后判断出DM是BCN的中位线,再根据“三角形的中位线平行于第三边并且等于第三边的一半”解答.三角形的作图应用【典例4】如图,ABC中,BAC90,ADBC,垂足为D.求作ABC的平分线,分别交AD、AC于P、Q两点,并证明APAQ.(要求:尺规作图,保留作图痕迹,不写作法)【解析】利用基本作图(作已知角的平分线)作BQ平分ABC即可;证明APQAQP即可得结论.【解答】解:BQ就是所求作的ABC的平分线,P、Q就是所求作的点.证明:ADBC,ADB90,BPDPBD90.BAC90,AQPABQ90.ABQPBD,BPDAQP.BPDAPQ,APQ AQP,APAQ.1.长度分别为2、7、x的三条线段能组成一个三角形,x的值可以是(C)A.4 B.5C.6 D.92.已知a、b、c是ABC的三条边长,化简|abc|cab|的结果为(D)A.2a2b2c B.2a2bC.2c D.03.一次数学活动课上,小聪将一副三角板按图中方式叠放,则等于75.(第3题图)(第4题图)4.小明把一副含45、30的直角三角板如图摆放,其中CF90,A45,D30,则等于(B)A.180 B.210C.360 D.2705.如图,M是ABC的边BC的中点,AN平分BAC,BNAN于点N,延长BN交AC于点D,已知AB10,AC16.(1)求证:BNDN;(2)求MN的长.(1)证明:AN平分BAC,12.BNAN,ANBAND90.在ABN和ADN中,12,ANAN,ANBAND,ABNADN(A.S.A.),BNDN;(2)解:ABNADN,ADAB10,CDACAD16106.又点M是BC的中点,BNDN,MN是BDC的中位线,MNCD3.6.如图,在ABC中,ACB90,CD为ABC的角平分线.(1)求作:线段CD的垂直平分线EF,分别交AC、BC于点E、F,垂足为O(要求尺规作图,保留作图痕迹,不写作法);(2)求证:COECOF.(1)解:线段CD的垂直平分线EF如图所示;(2)证明:ECOFCO,COCO,COECOF90,COECOF(A.S.A.).
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!