八年级数学下学期期中试卷(含解析) 新人教版49

上传人:san****019 文档编号:11763348 上传时间:2020-05-02 格式:DOC 页数:12 大小:246.50KB
返回 下载 相关 举报
八年级数学下学期期中试卷(含解析) 新人教版49_第1页
第1页 / 共12页
八年级数学下学期期中试卷(含解析) 新人教版49_第2页
第2页 / 共12页
八年级数学下学期期中试卷(含解析) 新人教版49_第3页
第3页 / 共12页
点击查看更多>>
资源描述
2015-2016学年福建省泉州市南安市柳城片区八年级(下)期中数学试卷一、选择题(每小题3分,共21分)1在代数式3x+、中,分式有()A4个B3个C2个D1个2分式与的最简公分母是()A24a2b2B24a3b3C24a3b2D24a2b33下列计算正确的是()A22=4B22=4C22=D22=4函数y=x2的图象不经过()A第一象限B第二象限C第三象限D第四象限5在平行四边形ABCD中,A:B:C=2:1:2,则D=()A60B72C108D1206ABCD的对角线相交于点O,下列结论错误的是()AABCD是中心对称图形BAOB与BOC的面积相等CAOBCODDAOBBOC7如图,ABCD的周长为16cm,AC、BD相交于点O,OEAC交AD于E,则DCE的周长为()A6cmB8cmC10cmD12cm二、填空题(每小题4分,共40分)8当x_时,分式有意义9用科学记数法表示:0.000305=_10己知关于x的方程的解是1,则a=_11点P(3,4)关于y轴对称点的坐标是_12将直线y=3x1向下平移3个单位,得到的直线的函数式是_13己知点M(m,4)在函数y=的图象上,则m_14在y=中,当x0或x0时,y随x的增大而_15函数y=kx+b的图象如图所示,则bk_016已知平行四边形ABCD的面积为4,O为两条对角线的交点,那么AOB的面积是_17如图,在ABCD中,AC=6,BD=10,(1)设ABCD的边BC=x,则x的取值范围是_;(2)若ACAB,则ABCD的周长等于_三、解答题(共89分)18计算:()1|5|+(1)019解分式方程:20化简求值:,其中a=121如图,ABCD中,E是BC的中点,连结AE并延长交DC的延长线于F试问:AB与CF相等吗?请说明理由22如图,已知一次函数y=kx+b(k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(x0)的图象在第一象限相交于点C,CD垂直于x轴,垂足为点D,若OA=OB=2,OD=1(1)直接写出A、B、D三点的坐标;(2)求一次函数和反比例函数的解析式23周末,小明骑自行车从家里出发到野外郊游从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象已知妈妈驾车的速度是小明骑车速度的3倍(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?24 如图,已知ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(2,5),(0,1),点B(3,5)在反比例函数y=(x0)图象上(1)求反比例函数y=的解析式;(2)将ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由25小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示(1)根据图象,小明家樱桃的日销售量的最大值是_千克;(2)分别求第12天前、后,小明家樱桃的日销售量y与上市时间x的函数关系式,并写出自变量x的取值范围;(3)试比较第10天与第12天的销售金额哪天多?26如图,A(0,1),M(3,2),N(4,4)动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=x+b也随之移动,设移动时间为t秒(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上2015-2016学年福建省泉州市南安市柳城片区八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共21分)1在代数式3x+、中,分式有()A4个B3个C2个D1个【考点】分式的定义【分析】根据分母中含有字母的式子为分式,即可解答【解答】解:由分式的定义可知,是分式故选:C2分式与的最简公分母是()A24a2b2B24a3b3C24a3b2D24a2b3【考点】最简公分母【分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可【解答】解:分式与的最简公分母是24a2b2;故选A3下列计算正确的是()A22=4B22=4C22=D22=【考点】负整数指数幂【分析】22表示2的平方的倒数,依据表示的意义即可求解【解答】解:22=故选C4函数y=x2的图象不经过()A第一象限B第二象限C第三象限D第四象限【考点】一次函数的性质【分析】根据k0确定一次函数经过第一三象限,根据b0确定与y轴负半轴相交,从而判断得解【解答】解:一次函数y=x2,k=10,函数图象经过第一三象限,b=20,函数图象与y轴负半轴相交,函数图象经过第一三四象限,不经过第二象限故选:B5在平行四边形ABCD中,A:B:C=2:1:2,则D=()A60B72C108D120【考点】平行四边形的性质【分析】在ABCD中,A:B:C=2:1:2,而且四边形内角和是360,由此得到A=C=120,B=60,那么ABCD的另一个内角就可以求出了【解答】解:在ABCD中,A:B:C=2:1:2,而A+B+C+D=360,A=C=120,B=60,ABCD的另一个内角D=B=60故选:A6ABCD的对角线相交于点O,下列结论错误的是()AABCD是中心对称图形BAOB与BOC的面积相等CAOBCODDAOBBOC【考点】平行四边形的性质【分析】由平行四边形的性质得出OA=OC,OB=OD,得出AOB的面积=BOC的面积,平行四边形是中心对称图形,由SAS证出AOBCOD;即可得出结论【解答】解:四边形ABCD是平行四边形,OA=OC,OB=OD,AOB的面积=BOC的面积,平行四边形是中心对称图形,在AOB和COD中,AOBCOD(SAS),A、B、C正确,D错误;故选:D7如图,ABCD的周长为16cm,AC、BD相交于点O,OEAC交AD于E,则DCE的周长为()A6cmB8cmC10cmD12cm【考点】平行四边形的性质【分析】根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可【解答】解:平行四边形ABCD,AD=BC,AB=CD,OA=OC,EOAC,AE=EC,AB+BC+CD+AD=16cm,AD+DC=8cm,DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8(cm),故选:B二、填空题(每小题4分,共40分)8当x1时,分式有意义【考点】分式有意义的条件【分析】根据分式有意义的条件:分母0可得:x10,解可得答案【解答】解:分式有意义,则x10,解得:x1,故答案为:19用科学记数法表示:0.000305=3.05104【考点】科学记数法表示较小的数【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【解答】解:0.000305=3.05104故答案为:3.0510410己知关于x的方程的解是1,则a=7【考点】分式方程的解【分析】分式方程去分母转化为整式方程,由分式方程的解为1,求出a的值即可【解答】解:分式方程去分母得:6a=7a+7x,把x=1代入整式方程得:6a=7a7,解得:a=7,故答案为:711点P(3,4)关于y轴对称点的坐标是(3,4)【考点】关于x轴、y轴对称的点的坐标【分析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数【解答】解:已知P的坐标为(3,4),根据平面直角坐标系中关于y轴对称的点的坐标特点:横坐标相反数,纵坐标不变,可得:点P关于y轴的对称点的坐标是(3,4),故答案为:(3,4)12将直线y=3x1向下平移3个单位,得到的直线的函数式是y=3x4【考点】一次函数图象与几何变换【分析】直接根据“上加下减”的原则进行解答即可【解答】解:将函数y=3x1向下平移3个单位,即得到y=3x13,则函数解析式为y=3x4故答案为:y=3x413己知点M(m,4)在函数y=的图象上,则m=3【考点】反比例函数图象上点的坐标特征【分析】根据反比例函数图象上点的坐标特征得到4m=12,然后解m的一次方程即可【解答】解:点M(m,4)在函数y=的图象上,4m=12,m=3故答案为314在y=中,当x0或x0时,y随x的增大而增大【考点】反比例函数的性质【分析】根据反比例函数y=(k0)的图象是双曲线;当k0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答【解答】解:k=20,当x0或x0时,y随x的增大而增大,故答案为:增大15函数y=kx+b的图象如图所示,则bk0【考点】一次函数图象与系数的关系【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解【解答】解:一次函数y=kx+b的图象经过第二、三、四象限,又当k0时,直线必经过二、四象限,k0图象与y轴负半轴相交,b0,bk0故答案为:16已知平行四边形ABCD的面积为4,O为两条对角线的交点,那么AOB的面积是1【考点】平行四边形的性质【分析】根据平行四边形的对角线互相平分,可推出三角形的中线;三角形的中线把三角形分成面积相等的两个三角形【解答】解:根据平行四边形的对角线性质可知,AO为ABD的中线,所以,SAOD=SAOB,同理可得,SAOB=SBOC=SCOD,所以,SAOB=S平行四边形ABCD=117如图,在ABCD中,AC=6,BD=10,(1)设ABCD的边BC=x,则x的取值范围是2x8;(2)若ACAB,则ABCD的周长等于8+4【考点】平行四边形的性质【分析】(1)根据平行四边形两条对角线互相平分可得CO=AC=3,BO=BD=5,再根据三角形的三边关系可得53x5+3,进而可得x的取值范围(2)首先利用勾股定理在直角ABO中计算出AB的长,再次利用勾股定理计算出BC的长,进而可得周长【解答】解:(1)四边形ABCD是平行四边形,CO=AC=3,BO=BD=5,53x5+3,2x8,故答案为:2x8;(2)在ABCD中,AC=6,BD=10,AO=CO=3,BO=DO=5,ACAB,AB=4,BC=2,ABCD的周长等于:2(4+2)=8+4故答案为:8+4三、解答题(共89分)18计算:()1|5|+(1)0【考点】实数的运算;零指数幂;负整数指数幂【分析】分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可【解答】解:原式=353+1=419解分式方程:【考点】解分式方程【分析】观察可得最简公分母是x(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【解答】解:方程的两边同乘x(x+2),得:3(x+2)=5x,解得:x=3检验:把x=3代入x(x+2)=150故原方程的解为:x=320化简求值:,其中a=1【考点】分式的化简求值【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可【解答】解:原式=,当a=1时,原式=121如图,ABCD中,E是BC的中点,连结AE并延长交DC的延长线于F试问:AB与CF相等吗?请说明理由【考点】平行四边形的性质;全等三角形的判定与性质【分析】根据平行四边形的性质可得ABCD,根据平行线的性质可得ABE=F,然后证明ABEFCE可得AB=CF【解答】解:AB与CF相等;四边形ABCD是平行四边形,ABCD,ABE=F,E是BC的中点,BE=CE,在ABE和FCE中,ABEFCE(ASA),AB=CF22如图,已知一次函数y=kx+b(k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(x0)的图象在第一象限相交于点C,CD垂直于x轴,垂足为点D,若OA=OB=2,OD=1(1)直接写出A、B、D三点的坐标;(2)求一次函数和反比例函数的解析式【考点】反比例函数与一次函数的交点问题【分析】(1)根据原点到A、B、D三点的距离结合图形中A、B、D三点的位置,即可得出三点的坐标;(2)由A、B点在一次函数图象上,用待定系数法即可求出一次函数解析式,由CDx轴,可知C、D点的横坐标相等,由点C在一次函数图象上,可求出点C的坐标,再将C点坐标代入反比例函数解析式,可得出关于m的方程,解方程即可得出m的值,从而得出反比例函数解析式【解答】解:(1)OA=OB=2,OD=1,A点在x轴负半轴,B在y轴正半轴,D在x轴正半轴,点A(2,0),B(0,2),D(1,0)(2)将点A、B的坐标代入y=kx+b中得:,解得:一次函数的解析为为y=kx+2CD垂直于x轴,点D坐标为(1,0),点C的坐标为(1,3)点C(1,3)在反比例函数y=的图象上,有3=,即m=3反比例函数的解析式为y=(x0)23周末,小明骑自行车从家里出发到野外郊游从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象已知妈妈驾车的速度是小明骑车速度的3倍(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?【考点】一次函数的应用【分析】(1)根据图象可以求出小明在甲地游玩的时间,由速度=路程时间就可以求出小明骑车的速度;(2)直接运用待定系数法就可以求出直线BC和DE的解析式,再由其解析式建立二元一次方程组,求出点F的坐标就可以求出结论【解答】解:(1)由图象得:在甲地游玩的时间是10.5=0.5(h)小明骑车速度:100.5=20(km/h);(2)妈妈驾车速度:203=60(km/h)设直线OA的解析式为y=kx(k0),则10=0.5k,解得:k=20,故直线OA的解析式为:y=20x小明走OA段与走BC段速度不变,OABC设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=10y=20x10设直线DE解析式为y=60x+b2,把点D(,0)代入得:b2=80y=60x80,解得:F(1.75,25)答:小明出发1.75小时被妈妈追上,此时离家25km24 如图,已知ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(2,5),(0,1),点B(3,5)在反比例函数y=(x0)图象上(1)求反比例函数y=的解析式;(2)将ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由【考点】平行四边形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移【分析】(1)利用待定系数法把B(3,5)代入反比例函数解析式可得k的值,进而得到函数解析式;(2)根据A、D、B三点坐标可得AB=5,ABx轴,根据平行四边形的性质可得ABCDx轴,再由C点坐标可得ABCD沿x轴正方向平移10个单位后C点坐标为(15,1),根据反比例函数图象上点的坐标特点可得点C落在反比例函数y=的图象上【解答】解:(1)点B(3,5)在反比例函数y=(x0)图象上,k=15,反比例函数的解析式为y=;(2)平移后的点C能落在y=的图象上;四边形ABCD是平行四边形,ABCD,AB=CD,点A,D的坐标分别为(2,5),(0,1),点B(3,5),AB=5,ABx轴,DCx轴,点C的坐标为(5,1),ABCD沿x轴正方向平移10个单位后C点坐标为(15,1),平移后的点C能落在y=的图象上25小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示(1)根据图象,小明家樱桃的日销售量的最大值是120千克;(2)分别求第12天前、后,小明家樱桃的日销售量y与上市时间x的函数关系式,并写出自变量x的取值范围;(3)试比较第10天与第12天的销售金额哪天多?【考点】一次函数的应用【分析】(1)观察图象,即可求得日销售量的最大值;(2)分别从0x12时与12x20去分析,利用待定系数法即可求得小明家樱桃的日销售量y与上市时间x的函数解析式;(3)第10天和第12天在第5天和第15天之间,当5x15时,设樱桃价格与上市时间的函数解析式为z=kx+b,由点(5,32),(15,12)在z=kx+b的图象上,利用待定系数法即可求得樱桃价格与上市时间的函数解析式,继而求得10天与第12天的销售金额【解答】解:(1)由图象得:120千克,(2)当0x12时,设日销售量与上市的时间的函数解析式为y=k1x,直线y=k1x过点(12,120),k1=10,函数解析式为y=10x,当12x20,设日销售量与上市时间的函数解析式为y=k2x+b,点(12,120),(20,0)在y=k2x+b的图象上,解得:,函数解析式为y=15x+300,小明家樱桃的日销售量y与上市时间x的函数解析式为:y=;(3)第10天和第12天在第5天和第15天之间,当5x15时,设樱桃价格与上市时间的函数解析式为z=mx+n,点(5,32),(15,12)在z=mx+n的图象上,解得:,函数解析式为z=2x+42,当x=10时,y=1010=100,z=210+42=22,销售金额为:10022=2200(元),当x=12时,y=120,z=212+42=18,销售金额为:12018=2160(元),22002160,第10天的销售金额多26如图,A(0,1),M(3,2),N(4,4)动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=x+b也随之移动,设移动时间为t秒(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上【考点】一次函数综合题【分析】(1)利用一次函数图象上点的坐标特征,求出一次函数的解析式;(2)分别求出直线l经过点M、点N时的t值,即可得到t的取值范围;(3)找出点M关于直线l在坐标轴上的对称点E、F,如解答图所示求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值【解答】解:(1)直线y=x+b交y轴于点P(0,b),由题意,得b0,t0,b=1+t当t=3时,b=4,故y=x+4(2)当直线y=x+b过点M(3,2)时,2=3+b,解得:b=5,5=1+t,解得t=4当直线y=x+b过点N(4,4)时,4=4+b,解得:b=8,8=1+t,解得t=7故若点M,N位于l的异侧,t的取值范围是:4t7(3)如右图,过点M作MF直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点过点M作MDx轴于点D,则OD=3,MD=2已知MED=OEF=45,则MDE与OEF均为等腰直角三角形,DE=MD=2,OE=OF=1,E(1,0),F(0,1)M(3,2),F(0,1),线段MF中点坐标为(,)直线y=x+b过点(,),则=+b,解得:b=2,2=1+t,解得t=1M(3,2),E(1,0),线段ME中点坐标为(2,1)直线y=x+b过点(2,1),则1=2+b,解得:b=3,3=1+t,解得t=2故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!