碳化硅电子器件发展分析报告

上传人:无*** 文档编号:66257358 上传时间:2022-03-27 格式:DOC 页数:13 大小:92KB
返回 下载 相关 举报
碳化硅电子器件发展分析报告_第1页
第1页 / 共13页
碳化硅电子器件发展分析报告_第2页
第2页 / 共13页
碳化硅电子器件发展分析报告_第3页
第3页 / 共13页
点击查看更多>>
资源描述
碳化硅电力电子器件的发展现状分析目录1. SiC 器件的材料与制造工艺 21.1 SiC单晶 21.2 SiC外延 31.3 SiC器件工艺 42. SiC 二极管实现产业化 53. SiC JFET 器件的产业化发展 74. SiC MOSFET 器件实用化取得突破 75. SiC IGBT 器件 86. SiC 功率双极器件 97. SiC 功率模块 108. 国内的发展现状 119. SiC 电力电子器件面对的挑战 119.1 芯片制造成本过高 119.2 材料缺陷多,单个芯片电流小. 129.3 器件封装材料与技术有待提高. 1210. 小结 12在过去的十五到二十年中, 碳化硅电力电子器件领域取得了令人瞩目的成就,所研 发的碳化硅器件的性能指标远超当前硅基器件, 并且成功实现了部分碳化硅器件的产业 化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜 力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作 用。随着 SiC 单晶和外延材料技术的进步,各种类型的 SiC 器件被开发出来。 SiC 器件 主要包括二极管和开关管。 SiC 二极管主要包括肖特基势垒二极管及其新型结构和 PiN 型二极管。 SiC 开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开 关管(MOSFE)结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。1. SiC 器件的材料与制造工艺1.1 SiC 单晶碳化硅早在 1842 年就被发现了,但直到 1955 年,飞利浦(荷兰)实验室的 Lely 才开发出生长高品质碳化硅晶体材料的方法。到了 1987年,商业化生产的 SiC 衬底进 入市场, 进入 21世纪后, SiC 衬底的商业应用才算全面铺开。 碳化硅分为立方相 (闪锌 矿结构)、六方相(纤锌矿结构)和菱方相 3 大类共 260 多种结构,目前只有六方相中 的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。 立方相(3C-SiC)还不能获得有商业价值的成品。SiC 单晶生长经历了 3 个阶段 , 即 Acheson 法、 Lely 法、改良 Lely 法。利用 SiC 高温升华分解这一特性,可采用升华法即 Lely 法来生长 SiC 晶体。升华法是目前商业 生产 SiC 单晶最常用的方法,它是把 SiC 粉料放在石墨坩埚和多孔石墨管之间,在惰性 气体(氩气)环境温度为 2 500 C的条件下进行升华生长,可以生成片状SiC晶体。由于 Lely 法为自发成核生长方法,不容易控制所生长 SiC 晶体的晶型,且得到的晶体尺 寸很小, 后来又出现了改良的 Lely 法。改良的 Lely 法也被称为采用籽晶的升华法或物 理气相输运法(简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶 型,克服了 Lely 法自发成核生长的缺点,可得到单一晶型的 SiC 单晶,且可生长较大 尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片 的企业主要集中在欧美和日本。 其中 Cree 产量占全球市场的 85%以上,占领着 SiC 晶体 生长及相关器件制作研究的前沿。目前, Cree 的 6 英寸 SiC 晶片已经商品化 , 可以小批 量供货。此外,国内外还有一些初具规模的 SiC 晶片供应商,年销售量在 1 万片上下。 Cree生产的SiC晶片有80%上是自己消化的,用于 LED衬底材料,所以Cree是全球唯家大量生产SiC基LED器件的公司,这个业务使得它的市场表现突出,公司市盈 率长期居于高位。目前已出现了另一种碳化硅晶体生长方法, 即采用高温化学气相沉积方法 (HTCVD)。 它是用气态的高纯碳源和硅源, 在2200C左右合成碳化硅分子,然后在籽晶上凝聚生长, 生长速率一般为0.51mm/h左右,略高于 PVT法,也有研究机构可做到 2mm/h的生长 速率。气态的高纯碳源和硅源比高纯SiC粉末更容易获得,成本更低。由于气态源几乎没有杂质,因此,如果生长时不加入 n 型掺杂剂或 p 型掺杂剂,生长出的 4H-SiC 就是 高纯半绝缘(HPSI)半导体。HPSI与SI是有区别的,前者载流子浓度 3.5 X 10138X 1015/cm3 范围,具有较高的电子迁移率;后者同时进行n、 p 补偿,是高阻材料,电阻率很高,一般用于微波器件衬底,不导电。如果要生长n型掺杂或p型掺杂的4H-SiC也非常好控制, 只要分别通入氮或者硼的气态源就可以实现,而且通过控制通入的氮或 者硼的流量,就可以控制碳化硅晶体的导电强弱。目前瑞典的Norstel AB公司采用HTCVD商业化生产碳化硅衬底材料(n型、p型、HPSI型),目前已有4英寸HPSI型4H-SiC 衬底出售。1.2 SiC 外延为了制造碳化硅半导体器件,需要在碳化硅晶片表面生长 1 层或数层碳化硅薄膜。 这些薄膜具有不同的n、p导电类型,目前主流的方法是通过化学气相沉积方法进行同 质外延生长。 碳化硅外延生长方案中,衬底起很大的支配作用,早期碳化硅是在无偏 角衬底上外延生长的,即从晶锭上切割下来的晶片其外延表面法线与晶轴(c轴)夹角B=0,如碳化硅晶片的 Si(0001)或C(000)面,外延表面几乎没有台阶,外延生长期望 能够由理想的二维成核生长模型控制。然而实际生长发现,外延结果远未如此理想。由 于碳化硅是一种多型体材料,外延层中容易产生多型体夹杂,比如 4H-SiC 外延层中存 在 3C-SiC 夹杂,使外延层“不纯” ,变成一种混合相结构,极大地影响碳化硅器件的性 能,甚至不能用这样的外延材料制备器件。 另外,这样的外延层宏观外延缺陷密度很大, 不能用常规的半导体工艺制备器件,即薄膜质量难于达到晶圆级外延水平。后来发展了偏 8斜切碳化硅衬底,经过几十年的不断发展完善,现在己经成为碳 化硅外延的主要技术方案。与无偏角衬底比较起来,偏8斜切衬底的外延表面有很高的台阶密度,且台面长度很短,一般为十几纳米,反应物容易从台面上迁移到台阶扭折 处。外延时,不必等着扭折沿台面运动到表面边缘,所有的扭折可以同时以相似类的速 率运动,直至外延生长结束,这就是所谓的台阶流控制 (step-flow) 外延生长机制。虽 文案大全然在偏 8斜切衬底上外延时可以利用台阶流进行控制生长,较好地解决了多型体夹杂 及相应的宏观缺陷等问题, 但是它也有其固有劣势。 Cree 在 SiC 衬底制备方面具有业内 领先地位,它的产品是业界的风向标,代表了需求的发展方向。首先,衬底斜切,在增 加外延台阶的同时,也引入了基平面位错,其次,衬底斜切,衬底产率降低,造成了很 大的原材料浪费, 增加了衬底制备的成本。 当晶圆直径增大时, 这个问题变得更加突出。 Cree现在供应的主流衬底片主要是 4英寸和6英寸大尺寸晶片,其中4英寸片提供斜切 偏角为 4以及无偏角的, 8的可以定制; 6英寸片只提供无偏角的, 对于相同规格 (产 品等级、掺杂类型、微管密度等 )的衬底片, 偏 8的比偏 4的贵约 1000美元, 偏 4 的比无偏角的贵约 1200 美元,当衬底片用量很大时,这是一个很可观的数目。因此, 从以上分析并结合目前发展趋势来看, 大偏角斜切衬底必然是一个过渡方案,在世界各 国科技人员的努力下, 外延要回归到小偏角斜切衬底方向上来。 现在 Cree 主推偏角为 4 衬底。1.3 SiC 器件工艺虽然碳化硅器件工艺和设备都与硅器件有很强的兼容性, 但也远不是可以原封不动 地照搬。与硅相比,碳化硅器件工艺的温度一般要高得多。碳化硅晶片较小、易碎、透 明、难适应,倒是一些大学实验室比较灵活,而且价格昂贵,大公司的生产线较成为开 发碳化硅器件工艺的主力。掺杂是最基本的器件工艺。由于一般杂质在碳化硅中的扩散系数跟在Si02中一样低,在适合于对碳化硅进行有效杂质扩散的温度下, Si02 已失去了对杂质的掩蔽作用, 而且 碳化硅本身在这样的高温下也不稳定, 因此不宜采用扩散掺杂, 而主要靠离子注入和材 料制各过程中的伴随掺杂来满足制造碳化硅器件的需要。在碳化硅材料的气相生长过程中,n型掺杂一般用电子级纯度的氮做掺杂剂,P型掺杂一般使用三甲基铝。n型离子注入的杂质一般也是氮。氮离子注入对晶格的损伤比 较容易用退火的方式消除。P型离子注入的杂质一般也是铝。由于铝原子比碳原子大得多, 注入对晶格的损伤和杂质处于未激活状态的情况都比较严重,往往要在相当高的衬 底温度下进行,并在更高的温度下退火。这样就带来了晶片表面碳化硅分解、硅原子升 华的问题。残留碳如果能形成石墨态碳膜,会对阻止表面继续分解起一定作用。于是, 尺寸与碳比较相当的硼也成为常用的 p型注入杂质。目前,P型离子注入的问题还比较 多,从杂质选择到退火温度的一系列工艺参数都还需要优化,而P型离子注入对提高功率MOS勺沟道迁移率又十分重要。文案大全栅氧化物与碳化硅之间的界面缺陷对功率MO勺沟道迁移率也有十分重要的影晌,因而栅氛化物的生长或淀积十分关键。 除类似于硅的热氧化之外,碳化硅还可用燃烧法 生长栅氧化物,而且这种方法产生的界面态密度较低。用热氧化法在NC中生长栅氧化物也能降低界面态的密度。就同样的栅氧化物生长方法而言,6H-SiC比4H-SiC的沟道迁移率要高一些 ; 而就体材料中的载流子迁移率而言,是 4H-SiC 比 6H-SiC 高。这说明 4H-SiC 的氧化物界面缺陷问题比较严重。使用1400 C高温快速退火法,n型和P型4H-SiC的欧姆接触都可以做到单位面积 接触电阻低达10-5? cm2量级的水平,所用的电极材料分别是Ni和A1。不过这种接触在400C C以上的热稳定性较差。对P型4H-SiC采用Al/Ni/W/Au复合电极可以把热稳定性 提高到600C 100小时,不过其接触比电阻高达 10-3? cm2。采用TaC和AlSi合金电极也 可获得类似效果。 6H-SiC 比 4H-SiC 容易获得低阻欧姆接触,其接触比电阻可低达10-62? cm 。在高压硅器件中采用的多数终端技术和钝化技术, 比如场板、场环和结终端等也适 用与碳化硅器件。除此而外,在结终端注入大剂量 Ar或B,借损伤晶格形成高阻区,起 类似于硅功率器件中半绝缘多晶硅 (SIPOS )的作用,也有明显效果。若在Ar、B离子注入后再在600C退火,器件的反向特性还会进一步改善。目前SiC功率器件封装工艺及方法通常借鉴Si IGBT封装技术,在DBC布局、芯片键合、高温焊料、硅凝胶填充、密封材料等方面还存在一些问题,针对 SiC 器件封装特 殊要求,三菱、塞米控、富士等公司在封装材料及结构方面提出了新的思路,如三菱公 司铜针布线技术,塞米控公司低温纳米银烧结技术,富士公司低电感和优化的DBC布局设计。2. SiC 二极管实现产业化SiC 电力电子器件中, SiC 二极管最先实现产业化。一般可分为肖特基二极管 (Schottky barrier diode ,SBD)、 PiN 二极管和 结势垒 控制肖特基二极管(junctionbarrier Schottky , JBS)三种。在5kV阻断电压以下的范围, 碳化硅SBD具有一定的优势, 而对于 PiN 结二极管, 由于其内部的电导调制作用而呈现出较低的导 通电阻,使得它更适合制备45kV或者以上电压等级的器件。JBS二极管则结合了肖特基二极管所拥有的出色的开关特性和 PiN 结二极管所拥有的低漏电流的特点。另外, 把 JBS 二极管结构参数和制造工艺稍作调整就可以形成混合PiN- 肖特基结二极管(merged PiN Schottky , MPS)。2001年德国Infineon公司率先推出SiC二极管产品,美国Cree和意法半导体等厂 商也紧随其后推出了 SiC 二极管产品。在日本,罗姆、新日本无线及瑞萨电子等投产了 SiC二极管。很多企业在开发肖特基势垒二极管(SBD和JBS结构二极管。目前,SiC二极管已经存在600V1700V电压等级和50A电流等级的产品。SiC 肖特基二极管能提供近乎理想的动态性能。做为单子器件, 它的工作过程中没 有电荷储存, 因此它的反向恢复电流仅由它的耗尽层结电容造成,其反向恢复电荷以及 其反向恢复损耗比 Si 超快恢复二极管要低一到两个数量级。更重要的是,和它匹配的 开关管的开通损耗也可以得到大幅度减少,因此提高电路的开关频率。另外,它几乎没 有正向恢复电压,因而能够立即导通,不存在双极型器件的开通延时现象。在常温下, 其正态导通压降和 Si 超快恢复器件基本相同,但是由于 SiC 肖特基二极管的导通电阻 具有正温度系数, 这将有利于将多个 SiC 肖特基二极管并联。在二极管单芯片面积和电 流受限的情况下,这可以大幅度提高SiC肖特基二极管的容量,使它在较大容量中的应 用成为可能。目前实验室报道的最大容量的 SiC二极管已经达到了 6500V/1000A的水平。 由于 SiC 开关管的发展相对二极管滞后,当前更普遍的做法是将 SiC 二极管和 Si IGBT 和MOSFE器件封装在一个模块中以形成大功率开关组合。目前Cree公司、Microsemi公司、Infin eon公司、Rohm公司的SiC肖特基二极管用于变频或逆变装置中替换硅基 快恢复二极管,显著提高了工作频率和整机效率。中低压SiC肖特基二极管目前已经在高端通讯开关电源、光伏并网逆变器领域上产生较大的影响。SiC肖特基二极管的发展方向是衬底减薄技术和Trench JBS结构。衬底减薄技术能够有效地减小低压 SiC 肖特基二极管的导通电阻, 增强器件浪涌电流能力, 减小器件热 阻。Infineon公司于2012年9月发布第五代SiC SBD产品,首次采用衬底减薄技术。 在SiC晶格里,JBS结构中离子注入p阱的深度受到限制(1un),反偏条件下浅p-n 结对肖特基结的屏蔽作用不是特别明显, 只有在相邻 p 阱之间的间距较小时才能突显出 来, 但同时带来的正向导通沟道宽度变窄效应使得正向导通压降显著增加。为了解决这一问题,新一代SiC肖特基二极管的发展方向是 Trench JBS结构。Cree公司新一代SiC 肖特基二极管同时采用 Trench JBS结构和衬底减薄技术,与传统的JBS二极管相比,正反向特性都得到了改善, 不仅增加了电流密度 (芯片面积减小 50%);也提高了阻断电 压(提高150V)和雪崩能力。3. SiC JFET 器件的产业化发展碳化硅JFET有着高输入阻抗、低噪声和线性度好等特点,是目前发展较快的碳化 硅器件之一,并且率先实现了商业化。与MOSFE器件相比,JFET器件不存在栅氧层缺陷造成的可靠性问题和载流子迁移率过低的限制, 同时单极性工作特性使其保持了良好 的高频工作能力。另外,JFET器件具有更佳的高温工作稳定性和可靠性。碳化硅JFET器件的门极的结型结构使得通常 JFET的阈值电压大多为负,即常通型器件,这对于电 力电子的应用极为不利,无法与目前通用的驱动电路兼容。美国 Semisouth 公司和 Rutgers大学通过引入沟槽注入式或者台面沟槽结构(TI VJFET )的器件工艺,开发出常断工作状态的增强型器件。 但是增强型器件往往是在牺牲一定的正向导通电阻特性的 情况下形成的,因此常通型(耗尽型)JFET更容易实现更高功率密度和电流能力,而耗尽型JFET器件可以通过级联的方法实现常断型工作状态。级联的方法是通过串联一个 低压的Si基MOSFE来实现。级联后的JFET器件的驱动电路与通用的硅基器件驱动电 路自然兼容。级联的结构非常适用于在高压高功率场合替代原有的硅IGBT器件,并且直接回避了驱动电路的兼容问题。目前,碳化硅JFET器件以及实现一定程度的产业化,主要由Infin eon和SiCED公司推出的产品为主。产品电压等级在1200V、1700V,单管电流等级最高可以达 20A,模块的电流等级可以达到 100A以上。2011年,田纳西大学报到了 50kW勺碳化硅模块,该 模块采用1200V/25A的SiC JFET并联,反并联二极管为 SiC SBD 2011年,Global Power Electronics 研制了使用SiC JFET制作的高温条件下SiC三相逆变器的研究,该模块峰 值功率为50kW (该模块在中等负载等级下的效率为98.5%10kHz 10kW 比起Si模块效率更高。2013年Rockwell公司采用600V /5A MOS增强型JFET以及碳化硅二极管并 联制作了电流等级为 25A 的三相电极驱动模块,并与现今较为先进的IGBT、 pin 二极管模块作比较:在同等功率等级下(25A/600V),面积减少到60%该模块旨在减小通态损 耗以及开关损耗以及功率回路当中的过压过流。4. SiC MOSFET器件实用化取得突破碳化硅MOSFE一直是最受瞩目的碳化硅开关管,它不仅具有理想的栅极绝缘特性、高速的开关性能、低导通电阻和高稳定性,而且其驱动电路非常简单,并与现有的电力 电子器件(硅功率 MOSFE和IGBT)驱动电路的兼容性是碳化硅器件中最好的。SiC MOSFET器件长期面临的两个主要挑战是栅氧层的长期可靠性问题和沟道电阻问题。 其中沟道电阻大导致导通时的损耗大, 为减少导通损耗而降低导通电阻和提高栅 氧层的可靠性的研发一直在进行。 降低导通电阻的方法之一是提高反型沟道的载流子迁 移率,减小沟道电阻。为了提高碳化硅MOSFE栅氧层的质量,降低表面缺陷浓度,提高载流子数量和迁移率, 一种最通用的办法是实现生长界面的氮注入, 也被称为界面钝 化,即在栅氧层生长过程结束后,在富氮的环境中进行高温退火,这样可以实现沟道载 流子迁移率的提高,从而减小沟道电阻,减小导通损耗。降低导通电阻的方法之二是采 用在栅极正下方开掘沟槽的沟槽型栅极结构。目前已经投产的SiC MOSFET都是“平面型”平面型在为了降低沟道电阻而对单元进行微细化时,容易导致JFET电阻增大的问题,导通电阻的降低方面存在一定的局限性。而沟槽型在构造上不存在JFET电阻。因此,适于降低沟道电阻、减小导通电阻,但是Si沟槽型MOSFE目前尚未解决沟槽刻蚀之后侧壁沟道的表面问题。美国Cree和日本Rohm公司已经能提供业界领先的碳化硅的MOSFE器件。美国已经将碳化硅MOSFE器件应用于开发2.7MVA的固态功率变电站,该固态功率变电站可能 将被应用于美国下一代航空母舰CVN-21的配电系统中。采用全碳化硅功率模块,可以使传统的低频(60Hz)变压器转变为高频(20kHz)固态功率变电站,预计使变压器的 重量由 6吨降低到 1.7 吨,体积从 10立方米降低到 2.7 立方米,大大提高舰船系统的 性能。2012年,日本三菱电机通过使用碳化硅制造的MOSFE和肖特基二极管,研发出一个达11kW逆变器,它比基于硅器件制造的逆变器,降低能源损耗达七成,输出功率 为10W/cm。日本三菱电机报道了使用强制风冷的三相400V输出全碳化硅逆变器,采用了碳化硅JFET和碳化硅肖特基势垒二极管,这套装置的功率密度达到了50kVA/升,远高于传统的硅基装置。2013年3月美国Cree发布第2代SiC MOSFE。与第1代产品相 比,通过缩小芯片面积等手段压缩了成本。以耐压为 1.2kV 的品种为例,第 2 代芯片面 积比第 1 代缩小了约 40%。5. SiC IGBT 器件由于受到工艺技术的制约,碳化硅IGBT的起步较晚,高压碳化硅IGBT面临两个挑战:第一个挑战与碳化硅 MOSFE器件相同,沟道缺陷导致的可靠性以及低电子迁移率 问题;第二个挑战是 N型IGBT需要P型衬底,而P型衬底的电阻率比 N型衬底的电阻 率高50倍。因此,1999年制成的第一个IGBT采用了 P型衬底。经过多年的研发,逐步 克服了 P型衬底的电阻问题,2008年报道了 13kV的N沟道碳化硅IGBT器件,比导通电阻达到22mQX cm2。有报道对15kV的N-IGBT和MOSFE的正向导通能力做了一个比较, 结果显示,在结温为室温时,在芯片功耗密度为200 W/cm以下的条件下,MOSFE可以获得更大的电流密度,而在更高的功耗密度条件下,IGBT可以获得更大的电流密度。 在 结温为127o C时,IGBT在功耗密度为50 W/cm2以上的条件下就能够导通比 MOSFE更 高的电流密度。同一年,该团队还报道了阻断电压达到12 kV的P沟道碳化硅IGBT,导通比电阻降到了 14mQX亦,体现了明显的电导调制能力。2012 年,Cree 公司 Sei-Hyung Ryu 等人制成 6.7mm x 6.7mm,有源区面积为 0.16cm2 的4H-SiC p-IGBT,正向击穿电压15kV,在室温栅压一 20V条件下,比导通电阻为 24m2? x cm。2014年,Tadayoshi Deguchi等人制成了击穿电压为 13kV,当测试温度为 523K 时,栅压一 20V时微分比导通电阻为 33 m? x cm的平面栅PIGBT。碳化硅IGBT器件的优势应用范围为10kV以上的高压领域。在这一领域中,碳化硅 MOSFE器件会面临通态电阻过高的问题,但是在10kV以下的应用中,碳化硅IGBT相对于碳化硅MOSFET的优势并不十分明显。在 15 kV以上的应用领域,碳化硅IGBT综合 了功耗低和开关速度快的特点,相对于碳化硅的MOSFE以及硅基的IGBT、晶闸管等器件具有显著的技术优势, 特别适用于高压电力系统应用领域。 新型高温高压碳化硅 IGBT 器件将对大功率应用,特别是电力系统的应用产生重大的影响。可以预见的是,高压碳 化硅IGBT器件将和PiN二极管器件一起,成为下一代智能电网技术中电力电子技术最 核心的器件。6. SiC 功率双极器件用碳化硅可以制造阻断电压很高的双极器件, 譬如高压 PiN 二极管和晶闸管等。随 着碳化硅器件研发热潮的掀起,也引起了一些研究者对开发碳化硅BTJ的兴趣,SiC BJT毕竟不像SiC MOSFET那样会遇到氧化层品质严重影响器件特性的问题,开发SiC BJT的主要问题是提高电流增益。 而碳化硅晶闸管在兼顾开关频率、 功率处置能力和高温特 性方面最能发挥碳化硅的材料特长,与碳化硅功率MOSFE相比,对3000V以上的阻断电压,其通态电流密度可以高出几个数量级,因而特别适合于交流开关方面的应用。对 于直流开关方面的应用,则是碳化硅GTO门极可关断晶闸管)之所长。碳化硅门级换晶闸管(SiC GT)的研发也受到关注。2006年有研究报道了面积为 8mm*8mr的 SiC GT芯 片,导通峰值电流高达 200A。2010年报道了单芯片脉冲电流达 2000A的SiC GT器件。脉冲电流2000A的SiC GT器件7. SiC功率模块碳化硅功率模块是全球电力电子器件大型企业目前重点的发展方向。碳化硅功率模块已经在一些高端领域实现了初步应用,包括高功率密度电能转换、高性能电机驱动等 等,并具有广阔的应用前景和市场潜力。在碳化硅功率模块领域,首先开始研发的是基 于碳化硅功率二极管和硅基IGBT的混合功率模块。第一个实现商用的采用碳化硅二极管和硅基IGBT的高功率模块是Infin eon 公司的Prime PACK产品。随着碳化硅器件的 进步,全碳化硅功率模块不断被研发出来。美国Cree公司报道了阻断电压10kV,电流20A的碳化硅MOSFE芯片,并可以通过并联模块得到 100A的电流传输能力。2009年美 国Cree公司与Powerex公司开发出了双开关 1200V、100A的碳化硅功率模块,该模块 由耐高压和大电流的碳化硅的 MOSFE器件和碳化硅肖特基二极管组成。2011年,美国U.S. Army Research Laboratory 研发了用 20 个 80A 的 SiC MOSFE及 20 个 50A SiC 肖特基二极管制作了一个 1200V/800A的双向功率模块。该模块用作全桥逆变并与 Si器 件比较实验,结果表明功率损耗至少降低40%在同样输出电流等级情况下 SiC的模块可以工作在Si模块的4倍频状态。该模块预计用于电动汽车领域。2012年,日本富士电机公司研发基于 SiC MOSFE的1200V/100A的碳化硅功率模块。该模块采用新型无焊 线设计、氮化硅陶瓷作衬底制作,可以在200 C高温工作作,并且类似倒装芯片的压接式设计使得该模块与起传统的铝线键合模块相比具有内电感低的特点,同时损耗更低,与传统同功率IGBT模块相比具有更紧凑的结构,大小约为原先的1/2。2012年日本罗姆公司开始推出全碳化硅功率模块,2013年,美国的CREE公司和日本的三菱公司也推出了 1200V/100A的全碳化硅模块。这些全碳化硅功率模块组合了碳化硅MOSFE器件和肖特基二极管,利用高速开关及低损耗的特性,可替换原来额定电流为200400A的硅基IGBT模块。因器件散热性提高,使得装置的体积缩小了一半,并且发热量小,可缩 小冷却装置,实现装置的小型化,同时可以将电力转换时的损耗削减85%以上,大幅削文案大全减工业设备的电力损耗。全碳化硅MOSFE(或JFET)模块的优良特性使它具备在 10kV以下的应用中取代硅基IGBT的巨大潜力,取代的速度和范围将取决于碳化硅材料和器 件技术的成熟速度和成本下降的速度。8. 国内的发展现状由于受限于 SiC 单晶材料和外延设备, 国内在 SiC 功率器件方面的实验研究起步较晚,但我国一直在跟踪国外SiC宽禁带半导体的发展。在国家重点基础研究发展计划(973 计划)和高技术研究发展计划(863计划)的支持下,先后启动了 “宽禁带半导体XXX基础 研究”、“ SiC 高频高温功率器件”和“ SiC 单晶衬底制备”项目的研究。形成了集 SiC 晶体生长(中电46所、山东大学和中科院物理所等 )、SiC器件结构设计(电子科技大学 和西安电子科技大学等)、SiC器件制造(中电13所、55所和西安电子科技大学等)为一 体的产学研齐全的 SiC 器件研发队伍。2014年,中国的泰科天润半导体科技 (北京)有限公司(简称“泰科天润” )打破了国 外SiC肖特基二极管的商业垄断,其600V/ 10A 1 200V/20A等产品的成品率达到国际领先水平。2014年,中国电子科技集团公司第五十五研究所 (简称“中电五十五所”)SiC JBS二极管的击穿电压为 10kV。西安电子科技大学于 2014年首次使1.5kV SiC PiN 二 极管的正向导通电流达到 30A。国内对SiC功率MOSFE的研究起步较晚。2012年西安电子科技大学研制出 850V SiC UMOSFE器件;2014-2015年年初,中电五十五所、西安电子科技大学、中国科学院微 电子研究所分别研制出了 1200V SiC VDM0SFE1器件,最大电流10A。对于 SiC BJT 双极型晶体管,国内的研究主要集中在模型及新结构的设计。2012年,西安电子科技大学首次成功实现了4H-SiC功率BJT样品,器件的电流增益为 20。2015 年 9月,泰科天润发布了其 1200V/10A SiC BJT 研究成果,电流增益为 85.8,所 组成的功率模块容量为 53.03kW。对于结型场效应晶体管, 2013 年,南京电子器件研究所陈刚等人利用自主生长的SiC 外延材料,研制出 l700V 常开型和常关型 SiC JFET 器件,正向电流达 3.5A。 2014 年浙江大学盛况小组报道了 3500V/l5A 常关型 SiC JFET。9. SiC 电力电子器件面对的挑战9.1 芯片制造成本过高从商业化角度看, SiC 功率器件在电力电子器件市场很大,但 SiC 能否成功打入电 力领域市场,最终还是取决于它的性价比。目前虽已实现了 6 英寸 4H-SiC 衬底制备, 但 Cree 公司从 2 英寸 (1997 年 ) 扩大到商业化 6 英寸 (2010 年 ) 零微管 4H-SiC 衬底花费 了 13 年时间。 同时, SiC 功率器件工艺费用也很高, 设备及技术掌握在国外少数几家公 司。较高的价格导致其通常应用在高温,辐照等 Si 器件不能应用的领域。较小的市场 维持高的成本限制了 SiC 功率器件的发展。目前,同一规格 SiC 功率器件的价格是 Si 器件的 5-6 倍,当这一数值降到 2-3 倍 时,SiC功率器件将会大范围应用于电动汽车、机车、动车变流器中,推动牵引系统快 速发展。9.2 材料缺陷多,单个芯片电流小虽然目前 SiC 器件的研究已经取得了非常瞩目的成果, 但其性能离 SiC 材料本身的 极限还有较大距离。近几年,利用物理气相传输法 (PVT) 生长的 SiC 晶体和化学气相沉 积法(CVD)生长的SiC薄膜取得了惊人的进步。采用缓冲层、台阶控制外延及位置竞争 等技术制备的 SiC 薄膜晶体质量有了很大的提高, 并实现了可控掺杂。 但晶体中仍含有 大量的微管、位错和层错等缺陷,这些缺陷严重限制了 SiC 芯片成品率及大电流需求。SiC电力电子器件要想应用于牵引领域,单个芯片面积必须要在1.2cm2以上,以保证100A以上的通流能力,降低多芯片并联产生的寄生参数。因此,SiC材料必须解决上 述缺陷问题, SiC 器件才有可能在牵引领域批量应用。9.3 器件封装材料与技术有待提高目前SiC功率器件封装工艺及方法通常借鉴 Si IGBT封装技术,在DBC布局、芯片 键合、高温焊料、硅凝胶填充、密封材料等方面还存在一些问题,不能充分发挥SiC 材料高温及高频应用的优势。针对 SiC 器件封装特殊要求,三菱、塞米控、富士等公司在封装材料及结构方面提 出了新的思路,如三菱公司铜针布线技术,塞米控公司低温纳米银烧结技术,富士公司 低电感和优化的DBC布局设计。随着国际厂商对SiC封装技术的重视,封装材料的不断 发展及封装结构优化,封装将不再是限制 SiC 器件性能的瓶颈, SiC 材料优势将完全得 到展现。10. 小结碳化硅电力电子器件在提高电能利用效率和实现电力电子装置的小型化方面将发 挥越来越大的优势。 碳化硅电力电子器件能提高电能利用的效率,来实现电能损失的减 少,因为相对于硅器件,碳化硅器件在降低导通电阻和减小开关损耗等方面具有优势。 比如,由二极管和开关管组成的逆变电路中,仅将二极管材料由硅换成碳化硅,逆变器 的电能损失就可以降低 1530%左右,如果开关管材料也换成 SiC,则电能损失可降低 一半以上。 利用碳化硅制作的电力电子器件具备三个能使电力转换器实现小型化的特性: 更高的开关速度、 更低的损耗和更高的工作温度。 碳化硅器件能以硅器件数倍的速度进 行开关。开关频率越高,电感和电容等储能和滤波部件就越容易实现小型化;电能损失 降低,发热量就会相应减少,因此可实现电力转换器的小型化;而在结温方面,硅器件 在200 C就达到了极限,而碳化硅器件能在更高结温和环境温度的情况下工作,这样 就可以缩小或者省去电力转换器的冷却机构。随着碳化硅电力电子器件的技术进步, 目前碳化硅器件相对于硅器件, 不仅有性能 的巨大优势,在系统成本上的优势也逐渐显现。根据美国 Cree 公司的评估,与使用硅 IGBT和硅二极管相比,使用该公司的第2代SiC MOSFET和SiC二极管能够降低升压转换器的总成本。具体来说,通过提高开关频率来缩小电感器、降低电感器的成本,可使 总成本压缩到比使用 Si功率元件时更低的程度。以10kW级的升压转换器为例,按照Cree 公司估算的结果,如果使用Si功率元件,在20kHz下开关,需要的成本是181.4美元, 而使用SiC功率元件,在60kHz、100kHz下驱动的话,成本将分别降至 170美元、163 美元。使用 SiC 功率元件有望降低电力转换器的总成本。在电力电子器件应用的众多领域,比如输电系统、配电系统、电力机车、混合动力 汽车、各种工业电机、光伏逆变器、风电并网逆变器、空调等白色家电、服务器及个人 电脑等, 碳化硅器件将逐步地展现出其性能和降低系统成本方面的优势。作为下一代电 力电子器件的主要方向, 碳化硅电力电子器件将为电力电子带来重要的技术革新, 并推 动电力电子领域在今后二、三十年的发展。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!