资源描述
1 1第二节随机抽样考纲传真(教师用书独具)1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本.3.了解分层抽样和系统抽样方法.4.会用随机抽样的基本方法解决一些简单的实际问题(对应学生用书第160页)基础知识填充1抽样调查(1)抽样调查通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某些指标作出推断,这就是抽样调查(2)总体和样本调查对象的全体称为总体,被抽取的一部分称为样本(3)抽样调查与普查相比有很多优点,最突出的有两点:迅速、及时;节约人力、物力和财力2简单随机抽样(1)简单随机抽样时,要保证每个个体被抽到的概率相同(2)通常采用的简单随机抽样的方法:抽签法和随机数法3分层抽样(1)定义:将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本这种抽样方法通常叫作分层抽样,有时也称为类型抽样(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样4系统抽样系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本这种抽样方法也叫等距抽样或机械抽样知识拓展三种抽样方法的共性:等概率抽样,不放回抽样,逐个抽取,总体确定基本能力自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)简单随机抽样中每个个体被抽到的机会不一样,与先后有关()(2)系统抽样在起始部分抽样时采用简单随机抽样()(3)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平()(4)分层抽样中,每个个体被抽到的可能性与层数及分层有关()答案(1)(2)(3)(4)2(教材改编)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析在这个问题中,5 000名居民的阅读时间的全体是()A总体B个体C样本的容量D从总体中抽取的一个样本A从5 000名居民某天的阅读时间中抽取200名居民的阅读时间,样本容量是200,抽取的200名居民的阅读时间是一个样本,每名居民的阅读时间就是一个个体,5 000名居民的阅读时间的全体是总体3老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A随机抽样B分层抽样C系统抽样D以上都不是C因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样4利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是_总体个数为N8,样本容量为M4,则每一个个体被抽到的概率为P.5(20xx江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_件18,应从丙种型号的产品中抽取30018(件)(对应学生用书第160页)简单随机抽样(1)下列抽取样本的方式属于简单随机抽样的个数为()盒子里共有80个零件,从中选出5个零件进行质量检验在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;从20件玩具中一次性抽取3件进行质量检验;某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛A0 B1C2D3(2)利用简单随机抽样,从n个个体中抽取一个容量为10的样本若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为()A BC D(1)A(2)C(1)中都不是简单随机抽样,这是因为:是放回抽样,中是“一次性”抽取,而不是“逐个”抽取,中“指定个子最高的5名同学”,不存在随机性,不是等可能抽样(2)根据题意得,解得n28.故每个个体被抽到的概率为.规律方法1.简单随机抽样的特点(1)抽取的个体数较少.(2)逐个抽取.(3)不放回抽取.(4)等可能抽取.只有四个特点都满足的抽样才是简单随机抽样.2.抽签法与随机数法的适用情况(1)抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.(2)一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.3.从总体数N中抽取一个样本容量为n的样本(1)在整个抽样过程中,每个个体被抽到的概率是.(2)在一次抽取中,每个个体被抽到的概率是.跟踪训练(1)下列抽样检验中,适合用抽签法的是()A从某厂生产的5 000件产品中抽取600件进行质量检验B从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验C从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D从某厂生产的5 000件产品中抽取10件进行质量检验(2)总体由编号为01,02,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A08 B07 C02D01(1)B(2)D(1)A,D中总体的个体数较多,不适宜用抽签法,C中,一般甲、乙两厂的产品质量有区别,也不适宜用抽签法,故选B(2)由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.系统抽样(1)采用系统抽样方法从1 000人中抽取50人做问卷调查,将他们随机编号1,2,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间1,400的人做问卷A,编号落入区间401,750的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A12B13C14D15(2)(20xx湖北重点中学适应模拟)某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为_. 【导学号:79140323】(1)A(2)3(1)根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d20的等差数列an,通项公式an820(n1)20n12,令75120n121 000,得n,又nN,39n50,做问卷C的共有12人,故选A(2)系统抽样的抽取间隔为6.设抽到的最小编号为x,则x(6x)(12x)(18x)(24x)75,所以x3.规律方法1.系统抽样的三个关注点(1)若不改变抽样规则,则所抽取的号码构成一个等差数列,其首项为第一组所抽取的号码,公差为样本间隔.故问题可转化为等差数列问题解决.(2)抽样规则改变,应注意每组抽取一个个体这一特征不变.(3)如果总体容量N不能被样本容量n整除,可随机地从总体中剔除余数,然后再按系统抽样的方法抽样.2.系统抽样有一个抽样距其步骤为剔除,编号,均分,抽样.跟踪训练为规范学校办学,某省教育厅督察组对某所高中进行了抽样调查抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是()A13B19C20D51C由系统抽样的原理知抽样的间隔为13,故抽取的样本的编号分别为7,713,7132,7133,从而可知选C分层抽样(1)(20xx南昌一模)某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200人、高三n人中,抽取81人进行问卷调查已知高二被抽取的人数为30,那么n()A860B720C1 020D1 040(2)(20xx南京、盐城、连云港二模)下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:不喜欢戏剧喜欢戏剧男性青年观众4010女性青年观众4060现要在所有参与调查的人中用分层抽样的方法抽取n个人作进一步的调研,若在“不喜欢戏剧的男性青年观众”中抽取了8人,则n的值为_(1)D(2)30由分层抽样的特点可得,解得n1 040,故选D(2)由题意可得n15030.规律方法进行分层抽样的相关计算时,常用到的两个关系(1);(2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.跟踪训练(1)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为()A15,10,20B10,5,30C15,15,15D15,5,25(2)某企业三月中旬生产A、B、C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:产品类别ABC产品数量(件)1 300样本容量(件)130由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C的产品数量是_件. 【导学号:79140324】(1)A(2)800(1)三个年级抽取的人数分别为4515,4510,4520.故选A(2)设样本容量为x,则1 300130,x300.A产品和C产品的样本中共有300130170(件)设C产品的样本容量为y,则yy10170,y80.C产品的数量为80800(件)
展开阅读全文