新教材高中数学北师大版选修22教案:第2章 典型例题:导数与切线方程

上传人:仙*** 文档编号:42410024 上传时间:2021-11-26 格式:DOC 页数:2 大小:143KB
返回 下载 相关 举报
新教材高中数学北师大版选修22教案:第2章 典型例题:导数与切线方程_第1页
第1页 / 共2页
新教材高中数学北师大版选修22教案:第2章 典型例题:导数与切线方程_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
(新教材)北师大版精品数学资料导数与切线方程 函数在点处的导数的几何意义,就是曲线在点处的切线的斜率,因此求曲线在某点处的切线方程,可以先求出函数在该点的导数,即曲线在该点的切线的斜率,再用直线的点斜式,写出直线的方程。例、已知函数. 求曲线在点处的切线的方程;直线L为曲线的切线,且经过原点,求直线L的方程及切点坐标;如果曲线的某一切线与直线垂直,求切点坐标与切线方程。解析: 在点处的切线的斜率为, 切线的方程为:,即。法一、设切点为,则直线L的斜率为 直线L的方程为 又直线L过点, 整理得, 直线L的方程为,切点坐标为。法2、设直线L的方程为,切点为,则 又,解得, , 直线L的方程为,切点坐标为。切线与直线垂直,斜率 设切点为,则, 或,切线方程为或即或 点评:根据条件列方程或方程组是解决该问题的主要方法,灵活运用处的导数就是该点处的切线的斜率是解决有关问题的关键,由导数的几何意义可知,点处的切线方程
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!