资源描述
(新教材)北师大版精品数学资料活页作业(八)导数的四则运算法则1已知f(x)sin xcos x,则f等于()A0BCD1解析:f(x)sin xcos x,则f(x)cos xsin x,fcos sin .答案:C2曲线yx33x在某一点处的切线平行于x轴,则该点的坐标是()A(1,2)B(1,2)C(1,2)D(1,2)或(1,2)解析:yx33x,则y3x23.令y0,则x1.故切点为(1,2)或(1,2)答案:D3点P在曲线yx3x上移动,设点P处的切线的倾斜角为,则的取值范围是()ABCD解析:yx3x,则y3x211.故在点P处的切线的倾斜角的取值范围是.答案:B4设f(x)ax3bx(a0),若f(3)3f(x0),则x0()A1B2CD2解析:由已知得f(x)ax2b,f(x0)axb.又f(3)9a3b,由f(3)3f(x0)得3abaxb,解得x0.答案:C5已知函数f(x)cos x,则f()f()ABCD解析:f(x)cos x,f(),f(x)cos xsin x.f.f()f.答案:D6曲线yxln x在点M(e,e)处的切线在x,y轴上的截距分别为a,b,则ab()AeBeCeDe解析:y(xln x)xln xx(ln x)ln xxln x1,当xe时,yln e12.曲线yxln x在点M(e,e)处的切线方程为ye2(xe)令x0,得ye;令y0,得x.a,be.ab.答案:B7曲线yx32ax22ax上任意一点处的切线的倾斜角都是锐角,则整数a_.解析:yx32ax22ax,则y3x24ax2a.若曲线上任意一点处的切线的倾斜角都是锐角,则y0恒成立,即y3x24ax2a0恒成立则(4a)2432a16a224a0,解得0a,整数a1.答案:18某物体的运动曲线是st23t,则该物体的初速度是_解析:st23t.故s2t3.故s|t03.答案:39求下列函数的导数:(1)y;(2)y;(3)ysincos .解:(1)ycos xsin x,y(cos xsin x)(cos x)(sin x)sin xcos x.(2)y .(3)ysin cos sin x,y(sin x)cos x.10已知函数f(x)ax4bx3cx2dxe为偶函数,它的图像过点A(0,1)且在x1处的切线方程为2xy20,求函数f(x)的表达式解:由函数f(x)为偶函数得f(x)f(x),即ax4bx3cx2dxeax4bx3cx2dxe,bd0.f(x)ax4cx2e.又函数图像过点A (0,1),e1.函数f(x)ax4cx21.f(x)4ax32cx.x1处的切线的斜率k2f(1)4a2c2.由2xy20,得x1时,y0,点(1,0)在f(x)的图像上ac10.由求得a2,c3,故函数f(x)2x43x21.11已知f1(x)sin xcos x,记f2(x)f1(x),f3(x)f2(x),fn(x)fn1(x)(nN,n2),则f1f2f2 016_.解析:f1(x)sin xcos x,f2(x)f1(x)cos xsin x,f3(x)(cos xsin x)sin xcos x,f4(x)cos xsin x,f5(x)sin xcos x,以此类推,可得出fn(x)fn4(x)又f1(x)f2(x)f3(x)f4(x)0,f1f2f2 016f1f2f3f40.答案:012函数f(x)(xa)(xb)(xc)(a,b,c是两两互不相等的常数),则_.解析:f(x)x3(abc)x2(abbcca)xabc,f(x)3x22(abc)xabbcca.f(a)(ab)(ac)同理f(b)(ba)(bc),f(c)(ca)(cb)代入原式,得0.答案:013已知f(x)(x1)(x2)(x10),则f(10)_.解析:f(x)(x1)(x2)(x10) (x1)(x2)(x9)(x10),f(x)(x1)(x2)(x9)(x10)(x1)(x2)(x9)(x10) (x1)(x2)(x9)(x10)(x1)(x2)(x9)故f(10)98721362 880.答案:362 88014对正整数n,设曲线yxn(1x)在x2处的切线与y轴交点的纵坐标为an,求数列的前n项和的公式解:yxn(1x),ynxn1(1x)xnnxn1(n1)xn.当x2时,yn2n1(n1)2n(n2)2n1.f(2)2n,所求的切线方程为y2n(n2)2n1(x2)令x0,则y(n1)2n.an(n1)2n,2n,数列的前n项和为2n12.15已知函数yf(x)在点(1,f(1)处的切线方程为xy2,求a,b的值解:由f(x)f(x);由点(1,f(1)在直线xy2上f(1)1;由直线xy2的斜率为1f(1)1.故有
展开阅读全文