广东省江门市高考数学一轮复习 专项检测试题22 圆锥曲线与方程2

上传人:仙*** 文档编号:40249182 上传时间:2021-11-15 格式:DOC 页数:6 大小:215.50KB
返回 下载 相关 举报
广东省江门市高考数学一轮复习 专项检测试题22 圆锥曲线与方程2_第1页
第1页 / 共6页
广东省江门市高考数学一轮复习 专项检测试题22 圆锥曲线与方程2_第2页
第2页 / 共6页
广东省江门市高考数学一轮复习 专项检测试题22 圆锥曲线与方程2_第3页
第3页 / 共6页
点击查看更多>>
资源描述
高考数学精品复习资料 2019.5圆锥曲线与方程02三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17过点C(0,1)的椭圆的离心率为,椭圆与x轴交于两点、,过点C的直线l与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q(I) 当直线l过椭圆右焦点时,求线段CD的长;()当点P异于点B时,求证:为定值【答案】()由已知得,解得,所以椭圆方程为椭圆的右焦点为,此时直线的方程为 ,代入椭圆方程得,解得,代入直线的方程得 ,所以,故()当直线与轴垂直时与题意不符设直线的方程为代入椭圆方程得解得,代入直线的方程得,所以D点的坐标为又直线AC的方程为,又直线BD的方程为,联立得因此,又所以故为定值18已知双曲线C:的离心率为,且过点P(,1)求出此双曲线C的方程;【答案】19已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率。 (I)求椭圆的方程;(II) 直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标为,求直线l的斜率的取值范围。【答案】(I)设椭圆方程为 解得 a=3,所以b=1,故所求方程为 解得 又直线l与坐标轴不平行 故直线l斜率的取值范围是k20在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点.(1)求实数的取值范围;(2)设椭圆与轴正半轴,轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由.【答案】(2)设则由方程,知,又,由得.共线等价于将代入,解得 由知故不存在符合题意的常数21若直线l:与抛物线交于A、B两点,O点是坐标原点。(1)当m=1,c=2时,求证:OAOB; (2)若OAOB,求证:直线l恒过定点;并求出这个定点坐标。 (3)当OAOB时,试问OAB的外接圆与抛物线的准线位置关系如何?证明你的结论。【答案】设A(x1,y1)、B(x2,y2),由得可知y1+y2=2m y1y2=2c x1+x2=2m22c x1x2= c2,(1)当m=1,c=2时,x1x2 +y1y2=0 所以OAOB.(2)当OAOB时,x1x2 +y1y2=0 于是c2+2c=0 c=2(c=0不合题意),此时,直线l:过定点(2,0).(3)由题意AB的中点D(就是OAB外接圆圆心)到原点的距离就是外接圆的半径。而(m2c+)2(m2c)2+m2 = 由(2)知c=2 圆心到准线的距离大于半径,故OAB的外接圆与抛物线的准线相离。22如图,在平面直角坐标系中,抛物线的顶点在原点,焦点为F(1,0)过抛物线在轴上方的不同两点、作抛物线的切线、,与轴分别交于、两点,且与交于点,直线与直线交于点(1) 求抛物线的标准方程;(2) 求证:轴;(3) 若直线与轴的交点恰为F(1,0),求证:直线过定点【答案】(1)设抛物线的标准方程为, 由题意,得,即 所以抛物线的标准方程为(2)设,且,由(),得,所以所以切线的方程为,即整理,得, 且C点坐标为同理得切线的方程为,且D点坐标为由消去,得 又直线的方程为, 直线的方程为 由消去,得
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!