安徽省长丰县高中数学 第三章 导数及其应用 3.3 导数在研究函数中的应用 3.3.1 函数的单调性与导数教案 新人教A版选修11

上传人:仙*** 文档编号:39186634 上传时间:2021-11-10 格式:DOC 页数:9 大小:338.50KB
返回 下载 相关 举报
安徽省长丰县高中数学 第三章 导数及其应用 3.3 导数在研究函数中的应用 3.3.1 函数的单调性与导数教案 新人教A版选修11_第1页
第1页 / 共9页
安徽省长丰县高中数学 第三章 导数及其应用 3.3 导数在研究函数中的应用 3.3.1 函数的单调性与导数教案 新人教A版选修11_第2页
第2页 / 共9页
安徽省长丰县高中数学 第三章 导数及其应用 3.3 导数在研究函数中的应用 3.3.1 函数的单调性与导数教案 新人教A版选修11_第3页
第3页 / 共9页
点击查看更多>>
资源描述
3.3.1函数的单调性与导数项目内容课题(共 2 课时)修改与创新教学目标1了解可导函数的单调性与其导数的关系; 2能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次。教学重、难点教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间教学准备多媒体课件教学过程一、导入新课:函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用二、讲授新课:1问题:图3. 3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数相应地,(2) 从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数相应地,2函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系如图3.3-3,导数表示函数在点处的切线的斜率在处,切线是“左下右上”式的,这时,函数在附近单调递增;在处,切线是“左上右下”式的,这时,函数在附近单调递减结论:函数的单调性与导数的关系在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减说明:(1)特别的,如果,那么函数在这个区间内是常函数3求解函数单调区间的步骤:(1)确定函数的定义域;(2)求导数;(3)解不等式,解集在定义域内的部分为增区间;(4)解不等式,解集在定义域内的部分为减区间三典例分析例1已知导函数的下列信息:当时,;当,或时,;当,或时,试画出函数图像的大致形状解:当时,可知在此区间内单调递增;当,或时,;可知在此区间内单调递减;当,或时,这两点比较特殊,我们把它称为“临界点”综上,函数图像的大致形状如图3.3-4所示例2判断下列函数的单调性,并求出单调区间(1); (2)(3); (4)解:(1)因为,所以, 因此,在R上单调递增,如图3.3-5(1)所示(2)因为,所以, 当,即时,函数单调递增;当,即时,函数单调递减;函数的图像如图3.3-5(2)所示 (3)因为,所以,因此,函数在单调递减,如图3.3-5(3)所示(4)因为,所以 当,即 时,函数 ;当,即 时,函数 ;函数的图像如图3.3-5(4)所示注:(3)、(4)生练例3如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快反映在图像上,(A)符合上述变化情况同理可知其它三种容器的情况 解:思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢结合图像,你能从导数的角度解释变化快慢的情况吗? 一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些如图3.3-7所示,函数在或内的图像“陡峭”,在或内的图像“平缓”例4求证:函数在区间内是减函数证明:因为当即时,所以函数在区间内是减函数说明:证明可导函数在内的单调性步骤:(1)求导函数;(2)判断在内的符号;(3)做出结论:为增函数,为减函数例5已知函数 在区间上是增函数,求实数的取值范围解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:所以实数的取值范围为说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解例6已知函数y=x+,试讨论出此函数的单调区间.解:y=(x+)=11x2=令0. 解得x1或x1.y=x+的单调增区间是(,1)和(1,+).令0,解得1x0或0x1.y=x+的单调减区间是(1,0)和(0,1)四课堂练习1求下列函数的单调区间1.f(x)=2x36x2+7 2.f(x)=+2x 3. f(x)=sinx , x 4. y=xlnx2课本 练习课堂小结:(1)函数的单调性与导数的关系(2)求解函数单调区间(3)证明可导函数在内的单调性布置作业:P98 1,2板书设计3.3.1函数的单调性与导数1.函数的单调性与导数的关系在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减说明:(1)特别的,如果,那么函数在这个区间内是常函数2.求解函数单调区间的步骤:(1)确定函数的定义域;(2)求导数;(3)解不等式,解集在定义域内的部分为增区间;(4)解不等式,解集在定义域内的部分为减区间例1、例2、例3、例4、例5、例6教学反思函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的利用导数分析函数的单调性是非常有效的方法,因此,教师应结合图像,分析单调性与导数的关系,得出由导函数的正负判断函数的单调性。在得出结论后要用一定量的例题和学习,使学生熟练掌握这一结论和求解步骤。我国经济发展进入新常态,需要转变经济发展方式,改变粗放式增长模式,不断优化经济结构,实现经济健康可持续发展进区域协调发展,推进新型城镇化,推动城乡发展一体化因:我国经济发展还面临区域发展不平衡、城镇化水平不高、城乡发展不平衡不协调等现实挑战。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!