资源描述
3.1.3导数的几何意义项目内容课题(共 1 课时)修改与创新教学目标1了解平均变化率与割线斜率之间的关系;2理解曲线的切线的概念;3通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题。教学重、难点教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义教学准备多媒体课件教学过程一、导入新课:(一)平均变化率、割线的斜率(二)瞬时速度、导数我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,反映了函数y=f(x)在x=x0附近的变化情况,导数的几何意义是什么呢?二、讲授新课:(一)曲线的切线及切线的斜率:如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?图3.1-2我们发现,当点沿着曲线无限接近点P即x0时,割线趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.问题:割线的斜率与切线PT的斜率有什么关系? 切线PT的斜率为多少?容易知道,割线的斜率是,当点沿着曲线无限接近点P时,无限趋近于切线PT的斜率,即说明:(1)设切线的倾斜角为,那么当x0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.这个概念: 提供了求曲线上某点切线的斜率的一种方法; 切线斜率的本质函数在处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.(二)导数的几何意义:函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,即 说明:求曲线在某点处的切线方程的基本步骤:求出P点的坐标;求出函数在点处的变化率 ,得到曲线在点的切线的斜率;利用点斜式求切线方程.(二)导函数:由函数f(x)在x=x0处求导数的过程可以看到,当 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,即: 注:在不致发生混淆时,导函数也简称导数(三)函数在点处的导数、导函数、导数 之间的区别与联系。(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。(2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数 (3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。三典例分析例1:(1)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.(2)求函数y=3x2在点处的导数.解:(1),所以,所求切线的斜率为2,因此,所求的切线方程为即(2)因为所以,所求切线的斜率为6,因此,所求的切线方程为即(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数 解: 例2(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数,根据图像,请描述、比较曲线在、附近的变化情况解:我们用曲线在、处的切线,刻画曲线在上述三个时刻附近的变化情况(1) 当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降(2) 当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减(3) 当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢例3(课本例3)如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象根据图像,估计时,血管中药物浓度的瞬时变化率(精确到)解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,从图像上看,它表示曲线在此点处的切线的斜率如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值作处的切线,并在切线上去两点,如,则它的斜率为:所以 下表给出了药物浓度瞬时变化率的估计值:0.20.40.60.8药物浓度瞬时变化率0.40-0.7-1.4四课堂练习1求曲线y=f(x)=x3在点处的切线;2求曲线在点处的切线课堂小结:1曲线的切线及切线的斜率;2导数的几何意义。布置作业:P.80 5,6板书设计3.1.3导数的几何意义(一)曲线的切线及切线的斜率(二)导数的几何意义(三)导函数的概念(四)函数在点处的导数、导函数、导数 之间的区别与联系。例1、例2、例3练习1求曲线y=f(x)=x3在点处的切线;2求曲线在点处的切线 教学反思导数的几何意义是后面导数应用的基础,教学时需结合图形进行分析,以让学生更好地理解和把握这一结论。“以直代曲”是后面单调性与导数关系的基础,教学时可结合多媒体进行图像放大展示,使学生理解在切点附近,曲线与切线非常接近。6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375
展开阅读全文