基于虚拟仪器的热电偶温度巡检仪的设计与实现

上传人:仙*** 文档编号:31650744 上传时间:2021-10-12 格式:DOC 页数:66 大小:3.18MB
返回 下载 相关 举报
基于虚拟仪器的热电偶温度巡检仪的设计与实现_第1页
第1页 / 共66页
基于虚拟仪器的热电偶温度巡检仪的设计与实现_第2页
第2页 / 共66页
基于虚拟仪器的热电偶温度巡检仪的设计与实现_第3页
第3页 / 共66页
点击查看更多>>
资源描述
内蒙古科技大学毕业设计说明书(毕业论文)基于虚拟仪器的热电偶温度巡检仪的设计与实现摘 要温度检测在工农业生产、科研等工作中占有重要地位,温度检测仪器的功能和质量对于温度测试的结果有着很大影响,因此开发高性能的温度测试仪是十分必要的。虚拟仪器是以计算机为基础,配以相应测试功能的硬件作为信号输入输出的接口,利用虚拟仪器软件开发平台(如LabVIEW)在计算机上虚拟出仪器的面板并实现相应的功能,实现信号采集、分析、数据处理和结果显示的系统。本文设计的虚拟热电偶温度巡检仪采用NI PCI-6221数据采集卡,可实现对八路温度数据的实时采集与实时显示、系统管理、数据处理、数据存取。 论文首先简单介绍了虚拟热电偶温度巡检仪研究的背景、目的及意义,并给出了虚拟热电偶温度巡检仪的总体设计方案,用户可根据需要在前面板对热电偶的型号进行选择。其次,对数据采集模块和LabVIEW软件模块设计进行了详细论述。基于LabVIEW的软件模块的设计,包括前面板和框图程序的设计。最后,文中介绍了数据库的原理、使用以及用Access数据库实现数据存取的方法。关键词:虚拟仪器;数据采集;温度巡检仪;LabVIEW;Access;内蒙古科技大学毕业设计说明书(毕业论文)Design and Implementation of Thermocouple Temperature data logging devices Based on Virtual InstrumentAbstractTemperature detection occupies an important position in the industrial and agricultural production, scientific research and other work, the function and quality of the temperature detection apparatus have significant impacts on the results of the test temperature, so it is very necessary to develop high-performance temperature measuring device. Based on computer and with the corresponding test function hardware as a signal input and output interface, Virtual instrument is a system using virtual instrument software development platform (eg, LabVIEW) to simulate the instrument panel computer, to achieve the corresponding functions and to achieve signal acquisition, analysis, data processing and results display.The virtual thermocouple temperature data logging devices designed in this paper uses NI PCI-6221 data acquisition card to fulfill the function of eight-way real-time temperature data acquisition, real-time display, system management, data processing as well as data access. This paper first briefly introduces the background, purpose and significance of virtual thermocouple temperature data logging devices, and gives out the overall design program of the virtual thermocouple temperature data logging devices, users have choices according the first panel on the thermocouple types. Secondly, the data acquisition module and the LabVIEW software module design are discussed in detail. Based on the design of LabVIEW software modules, including the design of front panel and block diagram process, finally, the paper introduces the principle and use of the database, and the way to achieve data access by way of the Access database.Key words: virtual instrument; data acquisition; temperature data logging devices; LabVIEW; Access;内蒙古科技大学毕业设计说明书(毕业论文)目 录摘 要IAbstractI第一章 绪论11.1 课题研究背景、目的及意义11.1.1 课题研究背景11.1.2 目的及意义11.2 论文的设计任务21.3 论文研究的重点和难点3第二章 虚拟仪器简介42.1 虚拟仪器概述42.1.1 虚拟仪器概念42.1.2 虚拟仪器的特点及应用52.1.3 虚拟仪器与传统仪器的比较52.2 虚拟仪器的组成62.2.1 虚拟仪器I/O接口设备72.2.2 虚拟仪器的软件结构92.3 虚拟仪器的开发软件102.3.1 虚拟仪器的开发语言102.3.2 虚拟仪器开发平台LabVIEW102.3.3 LabVIEW应用程序的构成112.4 虚拟仪器的发展趋势及应用13第三章 温度检测原理153.1 温度检测法简介153.2 热电偶测温原理163.2.1 温度传感器163.2.2 热电偶测温原理173.2.3 温度测试的注意事项18第四章 基于虚拟仪器的热电偶温度巡检仪总体方案设计194.1 虚拟温度巡检仪简介194.2 系统实现的功能194.3 系统总体方案设计20第五章 系统的硬件设计215.1 系统硬件组成215.2 温度传感器及调理电路215.2.1 温度传感器215.2.2 调理电路设计225.2.2.1冷端温度补偿电路设计225.2.2.2信号调理电路设计235.3 PCI数据采集卡245.3.1 数据采集卡的功能245.3.2 信号采集系统255.3.3 数据采集卡的软件配置265.3.4 PCI6221数据采集卡简介及参数设置26第六章 基于LabVIEW的系统软件设计286.1 系统软件设计概述286.2 系统软件总体设计296.3 系统管理306.4 数据采集模块326.5 数据处理模块356.5.1 数字滤波356.5.2 线性化366.5.3 标度变换376.5.4 转换热电偶读数386.6 数据存取模块396.6.1 数据保存396.6.1.1写入测量文件保存数据406.6.1.2 数据库保存数据416.6.2 数据读取436.6.2.1数据回放436.6.2.2 历史数据查询446.7 数据报警模块466.8 数据显示模块466.9 报警记录查询模块47第七章 系统调试497.1 系统硬件调试497.2 系统软件调试49总结51参考文献53附录55致谢56 内蒙古科技大学毕业设计说明书(毕业论文)第一章 绪论1.1 课题研究背景、目的及意义 1.1.1 课题研究背景温度检测在工农业生产、科研等工作中占有重要地位,温度检测仪器的功能和质量对于温度测试的结果有着很大影响,因此开发高性能的温度测试仪是十分必要的。随着现代控制技术的发展,在工业控制领域需要对现场数据进行实时采集、控制,例如在发电厂、钢铁厂、化工领域的生产中都需要对大量数据进行现场采集,而温度采集又是其中极为重要的部分。在极端恶劣工作环境下,温度的测量常伴有巨大的撞击力或高温气体的高速流动,其共同特点是温度高且是瞬态变化的,响应时间可达ms甚至us级,测量技术难度大。常用的温度采集系统绝大部分是由集成的温度传感器和单片机构成的,该技术应用十分广泛, 但其编程复杂, 控制不稳定,系统的精度不高,这种方案人机界面不友好、调试期长、修改不方便,因此采用效率和自动化水平更高的新的测量手段,是温度测控系统的发展趋势。目前,国际上新型温度传感器正从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,小型、低功耗、高可靠性、低成本的温度传感器已经越来越受到关注,并广泛应用于工业控制和自动化测量系统中。虚拟仪器技术充分利用计算机强大的运算处理功能,突破了传统仪器在数据处理、显示、传输、存储等方面的限制,它通过交互式图形界面进行系统控制和测量数据显示,并使用框图模块来指定各种功能。采用集成电路温度传感器和虚拟仪器可以方便地构建一个温度测量系统,且外围电路简单,实现容易,系统硬件维护、功能扩展和软件升级非常方便。1.1.2 目的及意义随着现代测试技术的不断发展,以LabVIEW(Laboratory Virtual Instrument Engi-neering Workbench)为软件平台的虚拟仪器测量技术正在现代测控领域占据越来越重要的位置。因此如何能将热电偶温度测量及技术有效的与LabVIEW虚拟仪器相结合就成了温度测试领域的一个新课题。本课题就将在美国国家仪器公司(NationalInstruments)的虚拟仪器开发平台LabVIEW上进行,虚拟仪器是计算机技术和仪器测量技术相结合的产物,它充分利用计算机强大的运算处理功能,突破了传统仪器在数据处理、显示、传输、存储等方面的限制。目前,基于PC的A/D及D/A转换,开关量输入/输出,定时计数的硬件模块,在技术指标及可靠性等方面已相当成熟,而且价格低廉。常用传感器及相应的调理模块也趋向模块化、标准化,因而减少了硬件的重复开发,这使得我们可以方便地对其进行硬件维护、功能扩展和软件升级。虚拟仪器技术从八十年代末开始,已经经历十几年的发展历程。我国虚拟仪器的研究起步较晚,但近几年来也取得了长足进步。目前虚拟仪器技术正处在一个高速发展的阶段,在其设计过程中所体现出的新颖、灵活的设计思想是对传统仪器设计思想的一次巨大冲击。它顺应了现代测试仪器微小化、智能化、集成化的要求,所以进行基于虚拟仪器技术的检测系统的开发与研究势在必行,同时也是尽快缩小我国与其它发达国家电测水平差距的一条可行之路。1.2 论文的设计任务虚拟温度巡检仪系统是基于虚拟仪器平台所开发的应用系统,论文的设计任务主要是利用虚拟仪器平台的功能构建一个集温度信号的采集、存储、分析、处理和显示为一体的温度检测系统,对工艺流程中各点的温度达到实时、可靠检测的目的。本系统采用虚拟仪器开发平台LabVIEW软件,采用模块化思想,通过NI公司的数据采集卡PCI6221采集经热电偶温度传感器、信号调理电路输出的电压信号,并将此温度电压信号转换计算机能够识别的数字信号。本系统采用热电偶作为温度检测元件,必然存在线性化问题,线性化采用软件处理,调用公式节点编写程序进行线性化。由于采集来的是电压信号,而要显示温度值,所以就必须进行标度转换。在数显示模块:采用波形显示,数值显示,使温度数值更加直观的显示给用户,同时可以显示实时温度值与实时温度曲线,可以使用户对检测点的温度情况有更深入的了解。此外该系统还具有温度数据的保存、历史温度查询回放等功能模块。1.3 论文研究的重点和难点温度巡检仪故名思意就是对多路温度进行巡回检测,所以怎样实现多通道数据采集和数据显示是论文的重点。多通道采样方式的设置同时也是论文中的难点,多数通用采集卡都有多个模入通道,但是并非每个通道配置一个A/D,而是大家共用一套A/D,在A/D之前的有一个多路开关(MUX),以及放大器(AMP)、采样保持器(S/H)等。通过这个开关的扫描切换,实现多通道的采样。多通道的采样方式有三种:循环采样、同步采样和间隔采样。怎样将采到的多路数据进行数据处理与显示也是论文难点,首先对采来数据进行拆分分别处理,再进行信号合并便可同时在一波形图上显示。第二章 虚拟仪器简介2.1 虚拟仪器概述虚拟仪器的起源可以追溯到20世纪70年代,当时的计算机测控技术在国防、航天等领域已经具有了很快的发展速度,PC机的出现使仪器的计算机化成为可能。虚拟仪器是计算机技术和仪器仪表技术结合的产物。它把计算机、仪器硬件、固件与计算机软件结合起来。除继承传统仪器的己有功能外,还增加了许多传统仪器所不能及的先进功能。虚拟仪器的最大特点是其灵活性。用户在使用过程中可以根据需要添加或删除仪器功能,以满足各种需求,并且能充分利用计算机丰富的软硬件资源,突破了传统仪器在数据处理、表达、传送、存储方面的限制。2.1.1 虚拟仪器概念所谓虚拟仪器(Virtual Instrumention,简称VI ),在通用计算机平台上,根据需求定义和设计仪器的测试功能,使得使用者在操作计算机时,就像是在操作他自己设计的测试仪器一样,从而完成对被测试对象的采集、分析、判断、显示、数据存取等功能。虚拟仪器概念的出现,打破了传统仪器由厂家定义功能的工作模式,使得用户可以根据自己的要求,设计自己的仪器系统。在测试系统和仪器设计中尽量用软件代替硬件,充分利用计算机技术来实现和扩展传统测试系统与仪器的功能。“软件就是仪器”是虚拟仪器概念最简单,也是最本质的表述。虚拟仪器是现代计算机软件技术、通信技术和测量技术相结合的产物,它使得人类的测试技术进入了一个新的发展纪元。随着计算机技术特别是计算机的快速发展,CPU处理能力的增强,总线吞吐能力的提高以及显示器技术的进步,人们逐渐意识到,可以把仪器的信号分析和处理、结果的表达与输出功能转移给计算机来完成。这样,可以利用计算机的高速计算能力和宽大的显示屏更好地来完成原来的功能。2.1.2 虚拟仪器的特点及应用(1) 虚拟仪器特点虚拟仪器是计算机技术介入仪器领域所形成的一种新型的、富有生命力的器种类。在虚拟仪器中计算机处于核心地位,计算机软件技术和测试系统更紧地结合形成了一个有机整体,使得仪器的结构概念和设计观点等都发生了突性的变化。虚拟仪器特点可以归结为以下五个方面: 丰富和增强了传统仪器的功能; 突出“软件就是仪器”的新概念; 仪器由用户自己定义; 开放的工业标准; 便于构成复杂的测试系统,经济性好。(2) 虚拟仪器技术的应用虚拟仪器技术作为计算机技术与仪器技术相结合的创新技术,应用前景十分广泛。从总体而言,虚拟仪器是测量/测试领域的一个创新概念,改变了人们对仪器的传统观念,适应了现代测试系统网络化、智能化发展趋势。虚拟仪器技术应用方式各种各样,尤其在工业自动化、仪器制造及实验室方面的应用前景良好,并取得可观的效益。2.1.3 虚拟仪器与传统仪器的比较虚拟仪器具有传统仪器无法比拟的强大优势,因而必将成为未来仪器发展的趋势。如表2.1所示虚拟仪器与传统仪器的比较:表2.1 虚拟仪器与传统仪器的比较VI传统仪器开放、灵活,可与计算机技术保持同步发展封闭、固定用户定义仪器功能厂商定义仪器功能关键是软件关键是硬件价格低、可复用与可重配置性强价格昂贵技术更新周期短(12年)技术更新周期长(510年)软件使得开发与维护费用降至最低开发与维护开销高与网络及其它周边设备方便互联的面向应用的仪器系统功能单一、只可连有限的设备友好的图形界面,计算机读数分析处理图形界面小,人工读数,信息量小数面向应用的系统结构,可方便地与外设连接与其他仪器设备的连接十分有限与其他仪器设备的连接十分有限2.2 虚拟仪器的组成虚拟仪器(ViurtalInsrtumnet)是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向。这种结合基本有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。另一种方式是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能,虚拟仪器主要是指这种方式。虚拟仪器的组成与传统仪器一样,如图2.1所示的数据采集与控制、数据分析和处理、结果显示三部分组成。图2.1 虚拟仪器的内部功能划分对于传统仪器,这三个部分几乎均由硬件完成;对于虚拟仪器,前一部分由硬件构成。后两部分主要由软件实现。与传统仪器相比,虚拟仪器设计日趋模块化、标准化,设计工作量大大减小。2.2.1 虚拟仪器I/O接口设备1/0接口设备主要用来完成被测输入信号的采集、放大、模数转换。可根据实际情况采用不同的1/0接口硬件设备,如数据采集卡版(DAQ)、GPIB总线仪器、VXI总线仪器、串口仪器、USB等。虚拟仪器的构成主要有五种类型,如图2.2所示。图2.2 虚拟仪器构成方式(1) DAQ归(Data Aequisition)数据采集卡指的是基于计算机标准总线(如ISA、PCI、USB等)的内置功能插卡。其中USB是最新技术的数据采集卡,具有精度高,可携性好等优点,它更加充分地利用计算机的资源,大大增加了测试系统的灵活性和扩展性,更为详细的内容将在后面章节加以介绍;利用DAQ卡可方便快速地构建虚拟仪器系统。在性能上,随着A/D转换技术,滤波技术和信号调理技术的发展,DAQ卡的采样速率已达1GB/s,精度高达24位,通道数高达64个,并具有数字I/O,模拟I/O和计数器/定时器等通道。各仪器厂家生产了大量的DAQ卡功能模块供用户选择,如示波器、串行数据分析仪。动态信号分析仪、任意波形发生器等。在计算机上挂接多个DAQ功能模块,配合相应的软件,就可以构成一台具有多功能的测试仪器。这种基于计算机的仪器,既具有高档仪器的测量品质,又能满足测量需求的多样性。对我国大多数用户来说,它具有很高的性能价格比,是一种特别适合我国国情的虚拟仪器方案。(2) GPIB(Generae Purpose Inetrafce Bus)通用接口总线,是计算机和仪器间的标准通信协议。GPIB的硬件规格和软件协议以纳入国际工业标准EIEE488.1和EIEE488.2,它是最早的仪器总线,目前多数仪器都配备了遵循IEEE488的GPIB接口。典型的GPIB测试系统包括一台计算机,一块基于GPIB总线的接口卡和多台GPBI仪器软件及相应的传感模块硬件。每台GPIB仪器有单独的地址,由计算机控制操作。系统中的仪器可以增加、减少或更换,只需对计算机的控制软件作相应的改动。基于GPIB总线结构的接口卡数据传输速率一般低于500kb/s,不适合与对系统速度要求较高的应用。(3) VXI(VMEbus eXtension for Insturmenattion)是VME总线在仪器领域的扩展,1993年VXI总线1.4版本被批准为EIEE1155标准,成为开放式工业标准。仪器专用总线在吸收EIEE488的成功经验基础上,增加了10MHz时钟线,模拟和数字混合总线,星形总线等高速总线,定时关系严格,兼有计算机总线和仪器总线的优点。(4) Pxl(PCI extension for Instrumentation)是Compact PCI总线在仪器领域的扩展,是Nl公司于1997年发布的一种新的开放性、模块化仪器总线规范。其核心是Compaet PCI结构和Mierosotf Windows软件。PXI是在PCI内核技术上增加了成熟的技术规范和要求形成的。PXI增加了用于多板同步的触发总线和旧MHz参考时钟、用于精确定时的星形触发总线,以及用于相邻模块间高速通信的局部总线等,来满足实验和测量用户的要求。PXI兼容Compact PCI机械规范,并增加了空气冷却装置、环境测试(温度、湿度、振动和冲击实验)等要求。这样可保证多厂商产品的互操作性和系统的易集成性。(5) 串口系统:串口系统是以Serial标准总线仪器与计算机为仪器精简平台组成的虚拟测试系统。RS232总线是早期采用的通用串行总线,将带有RS232总线接口的仪器作为1/0接口设备,通过RS232串口总线与计算机组成虚拟仪器系统目前仍然是虚拟仪器构成方式之一,主要适用于速度较低的测试系统。2.2.2 虚拟仪器的软件结构虚拟仪器技术的核心是软件,其软件基本结构如图2.3所示。用户可以采用各种编程软件来开发自己所需要的应用软件。以美国Nl公司的软件产品LabVIEW和LabWindows/CVI为代表的虚拟仪器专用开发平台是当前流行的集成化开发工具。这些软件开发平台提供了强大的仪器软面板设计工具和各种数据处理工具,再加上虚拟仪器硬件厂商提供的各种硬件的驱动程序模块,大大简化了虚拟仪器的设计工作。随着软件技术的迅速发展,软件开发的模块化、复用化,和各种硬件仪器驱动软件的模块化、标准化,虚拟仪器软件开发将变得更加快速、方便。图2.3 虚拟仪器软件结构2.3 虚拟仪器的开发软件2.3.1 虚拟仪器的开发语言虚拟仪器系统的开发语言有:标准C,VisualC+,VisualBasci等通用程序开发语言。但直接由这些语言开发虚拟仪器系统,是有相当难度的。除了要花大量时间进行测试系统面板设计外,还要编制大量的设备驱动程序和底层控制程序。这些工作对于那些不熟悉这方面知识的工程设计人员来说,要花费大量时间和精力,这样直接影响了系统开发的周期和性能。除了通用程序开发语言以外,还有一些专用的虚拟仪器开发语言和软件,其中有影响的开发软件有:NI公司的LabVIEW,LabWindowsCVI。LabviEW采用图形化编程方案,是非常实用的开发软件。LabWindowsCVI是为熟悉C语言的开发人员准备的,是在Windows环境下的标准ANSIC开发环境。除此以外还有HP公司的HPVEE,HPTIG开发平台,美国Tektrornix公司的Ez-Test,Tek-TNs平台软件,这些都是国际上公认的优秀的虚拟仪器开发软件平台。2.3.2 虚拟仪器开发平台LabVIEWLabVIEW(Laboratory Virtual instrument Engineering)是一种图形化的编程语言,它广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。LabVIEW集成了与满足GPIB、VXI、RS-232和RS-485协议的硬件及数据采集卡通讯的全部功能。它还内置了便于应用TCP/IP、ActiveX等软件标准的库函数。这是一个功能强大且灵活的软件。利用它可以方便地建立自己的虚拟仪器,其图形化的界面使得编程及使用过程都生动有趣。图形化的程序语言,又称为“G”语言。使用这种语言编程时,基本上不写程序代码,取而代之的是流程图或流程图。它尽可能利用了技术人员、科学家、工程师所熟悉的术语、图标和概念,因此,LabVIEW是一个面向最终用户的工具。它可以增强你构建自己的科学和工程系统的能力,提供了实现仪器编程和数据采集系统的便捷途径。使用它进行原理研究、设计、测试并实现仪器系统时,可以大大提高工作效率。利用LabVIEW,可产生独立运行的可执行文件,它是一个真正的32位编译器。像许多重要的软件一样,LabVIEW提供了Windows、UNIX、Linux、Macintosh的多种版本。2.3.3 LabVIEW应用程序的构成所有的LabVIEW应用程序,即虚拟仪器(VI),它包括前面板(front panel)、流程图(block diagram)以及图标/连结器(icon/connector)三部分。(1) 前面板:前面板是图形用户界面,也就是VI的虚拟仪器面板,这一界面上有用户输入和显示输出两类对象,具体表现有开关、旋钮、图形以及其他控制(control)和显示对象(indicator)。图2.4所示是一个随机信号发生和显示的简单VI是它的前面板,上面有一个显示对象,以曲线的方式显示了所产生的一系列随机数。还有一个控制对象开关,可以启动和停止工作。显然,并非简单地画两个控件就可以运行,在前面板后还有一个与之配套的流程图。控制对象(输入)显示对象(输出)随机数机数机数发生器结开关构:循环与前面板控件对应的连线端子与前面板控件对应的连线端子开关图2.4 随机信号发生器前面板 图2.5 随机信号发生器程序框图(2) 流程图:流程图提供VI的图形化源程序。在流程图中对VI编程,以控制和操纵定义在前面板上的输入和输出功能。流程图中包括前面板上的控件的连线端子,还有一些前面板上没有,但编程必须有的东西,例如函数、结构和连线等。图2.5是与图2.4对应的流程图。我们可以看到流程图中包括了前面板上的开关和随机数显示器的连线端子,还有一个随机数发生器的函数及程序的循环结构。随机数发生器通过连线将产生的随机信号送到显示控件,为了使它持续工作下去,设置了一个While Loop循环,由开关控制这一循环的结束。如果将VI与标准仪器相比较,那么前面板上的东西就是仪器面板上的东西,而流程图上的东西相当于仪器箱内的东西。在许多情况下,使用VI可以仿真标准仪器,不仅在屏幕上出现一个惟妙惟肖的标准仪器面板,而且其功能也与标准仪器相差无几。这种设计思想的优点体现在两方面: 类似流程图的设计思想,很容易被工程人员接受和掌握,特别是那些没有很多程序设计经验的工程人员。设计的思路和运行过程清晰而且直观。如通过使用数据探针、高亮执行调试等多种方法,程序以较慢的速度运行,使没有执行的代码显示灰色,执行后的代码会高亮显示,同时在线显示数据流线上的数据值,完全跟踪数据流的运行。这为程序的调试和参数的设定带来诸多的方便。3 图标/连接器:VI具有层次化和结构化的特征。一个VI可以作为子程序,这里称为子VI(subvi),被其他VI调用。图标与连接器在这里相当于图形化的参数,在设计大型自检系统时,一步完成一个复杂系统的设计是相当有难度的。而在LabVIEW中提供的图标/连接工具,正是为实现模块化设计而准备的。设计者可把一个复杂自动检测系统分为多个子系统,每一个都可完成一定的功能。这样设计的优点体现在如下几方面:把一个复杂自动检测系统分为多个子系统,程序设计思路清晰,给设计者调试程序带来了诸多的方便。同时也对于将来系统的维护提供了便利。一个复杂自动检测系统分为多个子系统,每一个子系统都是一个完整的功能模块,这样把测试功能细节化,便于实现软件复用,大大节省软件研发周期,提高系统设计的可靠性。便于实现“测试集成”和虚拟仪器库的思想。同时为实现虚拟仪器设计的灵活性提供了前提。2.4 虚拟仪器的发展趋势及应用虚拟仪器正在继续迅速发展。它可以取代测量技术在传统领域的各类仪器。虚拟仪器在组成和改变仪器的功能和技术性能方面具有灵活性与经济性,因而特别适应于当代科学技术迅速发展和科学研究不断深化所提出的更高更新的测量课题和测量需求。“没有测量就没有鉴别,科学技术就不能前进”。虚拟仪器将会在科学技术的各个领域得到广泛应用。图形化编程平台的进一步发展与完善是虚拟仪器发展的一个重要方向。如何使用户进行少量的学习甚至不需要学习就可使用功能强大的虚拟仪器,如何使用构成简单的虚拟仪器系统并完成复杂的测试内容,如何帮助用户对测试结果进行分析和判断等内容,是虚拟仪器技术的努力方向。我国还基本处于传统仪器与计算机化仪器互相分离的状态,世界各大相关的产品商家都在向中国这个巨大的市场进军。结合我国的实际情况,我们必须走引进与自行开发相结合的道路。一方面,大力引进国外虚拟仪器方面的生产技术;另一方面,发展基于计算机的插卡式硬件模块为主的测控技术,发展图形化平台的软件产品,充分利用我们现有的计算机及测控技术硬件,缩短与国际先进水平的差距。VXI总线将成为未来虚拟仪器的理想硬件平台,这是由于VXI总线的性能决定的;另一方面,基于PCI一DAQ的虚拟仪器系统由于性价比高、灵活性好而受到大多数用户的青睐,将得到高速的发展。随着计算机硬件、软件技术的迅速发展,虚拟仪器将向高性能、多功能、集成化、网络化方向发展。目前,Nl提供了多种软硬件产品,应用遍布电子、机械、通信、汽车制造、生物、医药、化工、科研、教育等各个行业领域。虚拟仪器技术与网络技术相结合,构成网络化虚拟测试系统是虚拟仪器发展的方向之一。LabVIEW具有强大的网络通信功能,这种功能使LabVIEW用户可以容易的编写出具有强大网络通信能力的LabVIEW应用软件,实现远程测控。远程监测数据与控制系统将是虚拟仪器的发展趋势。第三章 温度检测原理3.1 温度检测法简介自然界中许多物质的物理属性与温度有关,如导体的电阻,灼热物体的颜色和辐射能量都与其本身温度密切相关,故温度检测的方法也分为多种。所有的温度测试仪在测温时其传感器一般处于两种状态:和被测对象相接触;和被测对象不接触。我们据此分别称之为接触法测温和非接触法测温。另外温度测试的对象也是各种各样。但通常我们可把这些对象划分为固体,液体和气体状态这三类。(1)固体表面温度与内部传热以及边界换热条件有关。固体内部的传热取决于材料的导热系数;边界的换热则取决于对流换热系数和发射率。固体内部向边界的传热取决于固体材料本身。固体材料包括金属材料和非金属材料。不同材料的导热机理是不一样的。在对固体表面测温时,大多采用接触法。在具体测温时,传感器如何与被测对象接触对温度的测试结果影响较大是个重要问题。经过长期的工程实践,人们总结出对固体表面测温时的几种提高测试准确度的方法分别为:等温线敷设法、平衡加热法、周期加热法等。(2)液体温度测量广一泛应用于石油化工、轻纺、制药、电力等部门。由于液体的比热及导热率都比较大,并且与检测元件有良好的接触,因此采用接触法是一种比较好的选择。只要测温元件选择合适,就能测量到接近于真实温度的测量值。(3)气体温度的测量,实质是对气流温度的测量。对于气流速度不高,但温度较高或者速度较快而温度不高的情况,测温仍以接触法为主;而对高速喷射燃烧的气流测温可采用非接触法。3.2 热电偶测温原理3.2.1 温度传感器温度测量的实现方法通常是使温度传感器与待测物体表面相接触或浸入待测流体。在选择温度传感器时应考虑的主要因素有温度测量范围、精度、响应时间、稳定性、线性度和灵敏度。目前,应用最广泛的温度传感器是热电偶、热电阻、热敏电阻、PN结型温度传感器以及集成温度传感器。以上各种温度传感器的温度测量范围有所重叠,但所适合的应用场合各不相同,选择环境中最适用的温度传感器必须充分了解各类温度传感器的基本特性。热电偶由两种不同的金属构成,它们的一端熔接在一起形成一个敏感结,温度变化时将有一个相应的热电势产生,该信号由引线引出。材料有贵金属铂和铂锗合金,普通金属铁、铜、康铜、镍铬合金等。使用热电偶测量温度时容易引入误差,由于热电势是因不同金属材料的结合产生的,故不同材料连接形成的其他结也会在电路中引入电压变化,这一误差信号称为冷端误差。热电阻是利用导体的电阻随温度变化而变化的特性测量温度的,电阻值随温度增加而增加。最常见的热电阻式温度传感器的构成材料是铂、镍或铜。铂的使用温度范围宽(-200850),重复性极好,可耐受各种化学物质,抗腐蚀性好,是一种多用途金属,但成本较高。热敏电阻由钻、锰、镍等金属的氧化物采用不同的配方高温烧结而成,然后采用不同的封装形式制成珠状、片状、杆状、垫圈状等形状,包括三类:电阻值随温度增加而增加的正电阻温度系数热敏电阻(PTC),电阻值随温度增加而减小的负电阻温度系数热敏电阻(NTC)和在某一特定温度下电阻值会发生突变的临界温度电阻器(CTR)。CTR主要用作温控开关。在温度测量中主要采用NTC和PTC,尤其NTC应用较多。由于热敏电阻的阻值随温度变化而迅速变化,并且阻值相对于引线电阻来说很大,因而,引线电阻对测量影响小,非常适合测量微弱温度变化。NP结型温度传感器利用了在一定的电流模式下,PN结的正向电压与温度之间有很好的线性关系这一特征,与上述温度传感器相比,最大优点是输出特性呈线性,测温精度高。包括温敏二极管和温敏三极管,另外,温敏晶体管及其辅助电路集成同一芯片上可制成集成化温度传感器,其优点是直接给出正比于绝对温度的线性输出数字量,体积小,便于高精度、大批量生产,是现代温度传感器的主要发展方向之一,目前常用的有AD590、DSl8B20等等。综上所述,热电偶作为测温元件,其结构简单、制造容易、使用方便、测温精度较高,可就地测量和远传。在工作时,只要与显示仪表配合即可测量气体、液体、固体的温度。热电偶可以用来测量2001600范围内的温度,有些热电偶甚至可测2000以上温度。所以热电偶是使用最广泛的测温元件之一。通过热电偶冷端补偿进行温度测量是一种传统、有效的方法,广大技术工作人员在实际的测量检测中已经积累了较多的经验。此课题采用镍铬一镍硅热电偶(K型)其使用温度范围为2001300。3.2.2 热电偶测温原理热电偶是一种感温元件, 它能将温度信号转换成热电势信号, 通过电气测量仪表的配合, 就能测量出被测的温度。热电偶测温的基本原理是热电效应。在由两种不同材料的导体 A 和 B 所组成的闭合回路中 , 当 A 和 B 的两个接点处于不同温度 T 和 To时, 在回路中就会产生热电势,这就是所谓的塞贝克效应。导体 A 和 B 称为热电极,温度较高的一 端 (T )叫工作端 ( 通常焊接在一起 );温度较低的一端 (To )叫自由端 ( 通常处于某个恒定的温度下)。如图3.1热电偶测温原理图:图3.1 热电偶测温原理图由热电效应可知,闭合回路中产生的热电势由两部分组成,即接触电势和温差电势,总电势为。实验结果表明,温差电势比接触电势小很多,可忽略不计,则热电偶的接触电势可表示为 (31)这就是热电偶测温基本公式。 根据热电势与温度函数关系,可制成热电偶分度表。分度表是在自由端温度 To=0 的条件下得到的。不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时, 只要该材料两个接点的温度相同, 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表, 测得热电势后, 即可知道被测介质的温度。3.2.3 温度测试的注意事项温度检测技术是一种精度较高,测温误差较小的检测技术,如果应用不当,将会引起很大的测量误差,得不到正确的温度数据。因此在实际应用中,应注意以下儿个方面:(l)避免受到过大的震动和应力作用:当热敏电阻受到冲击、震动或其他形式的加速时,会导致感温元件变形、弯曲而产生应力,从而改变其温度一电阻特性。(2)避免在强磁场中使用:由仪器的测温原理可知,其导电机理与感温元件内部电子的状态有关。当感温元件周围存在磁场时,必将改变其内部电子的运动状态,引起阻值变化,引起磁阻效应。此外还有自热效应、压力影响、引线电阻影响等,这里不再赘述。第四章 基于虚拟仪器的热电偶温度巡检仪总体方案设计4.1 虚拟温度巡检仪简介温度巡检仪就是对多个温度检测点进行分时的巡回检测,即一台仪表便可实现对多路温度检测,虽说智能温度巡检仪能完成对多点温度的检测,但只能对温度进行数值显示,对数据的保存读取操作困难,基于虚拟仪器的温度巡检仪,不仅能显示温度数值,而且能对温度实时变化趋势通过曲线显示,能给用户一个友好的监控界面。使用户能很好的了解现场温度变化情况,数据的存取操作简单,只需通过按钮便可实现操作。用户可以根据需要查询某一时间段数据,以便进行数据分析,还可根据现实需要进行参数修改。4.2 系统实现的功能本论文设计主要是解决多点温度的巡回检测,进行实时的显示温度值和温度曲线。为了改善传统温度巡检仪的功能。此虚拟温度巡检仪系统应实现以下功能:(1)密码设定:确保系统安全;(2)对热电偶的型号、通道号设置及冷端温度补偿,热电偶传感器的类型共有K,E,S,T,J,R,B,N八种可供选择;设置温度信号的输入方式;输入方式有差分输入,单端输入和无参考地单端输入; (3)检测参数的显示:如检测时间、设定温度、当温度超出某个范围进行报警等;(4)温度实时曲线显示;同时,具有数字显示和波形图显示;(5)数据处理与分析:可以进行在线分析。当采集或读入数据后,进行线性化处理;选用不同的滤波器进行数字滤波。(6)温度数据保存:将采集到的数据保存到数据库中,在数据库中有数据创建的时间,通道号等信息,便于数据采集后的读取处理与数据分析。4.3 系统总体方案设计整个温度巡检仪的原理框图如图4.1所示,系统由硬件和软件两部分组成。硬件部分包括热电偶温度传感器,温度信号调理模块,PCI6221数据采集卡(DAQ)及PC机4部分组成。软件部分采用美国NI公司的LABVIEW虚拟仪器软件平台,来完成对采集进来的八路温度信号进行数据分析和显示。本系统结果显示形象直观,操作方便,并且通过修改软件还可以容易地扩展功能。针对温度信号进行高精度地测试,整个系统设计的核心是温度信号调理电路的设计以及以LABVIEW为基础的软件开发。系统基本工作原理:传感器将感受到的环境温度信号以电压形式输出到信号调理电路,信号经过调理后输入到数据采集卡进行AD转换,AD转换后的数据直接进入微机,再由虚拟仪器系统对数据进行处理和显示。图4.1基于虚拟仪器的热电偶温度巡检仪系统框图第五章 系统的硬件设计本章主要介绍虚拟温度巡检仪的硬件设计,首先介绍了系统的硬件组成,然后是温度传感器检测元件的介绍、调理电路的设计、PCI6221数据采集卡的介绍。5.1 系统硬件组成本虚拟温度巡检仪首先通过温度传感器(热电偶)通过多路转换开关选通经放大电路转换到0-5v、滤波器剔除噪声再经反向多路转换开关单端接入数据采集卡,计算机进行运算处理。图5.1给出了虚拟温度巡检仪硬件原理框图:图5.1 系统硬件原理框图5.2 温度传感器及调理电路5.2.1 温度传感器系统选择热电偶作为温度传感器,其结构简单、制造容易、使用方便、测温精度较高,可就地测量和远传。在工作时,只要与显示仪表配合即可测量气体、液体、固体的温度。热电偶可以用来测量-2001600范围内的温度,有些热电偶甚至可测2000以上温度。所以热电偶是使用最广泛的测温元件之一。通过热电偶冷端补偿进行温度测量是一种传统、有效的方法,广大技术工作人员在实际的测量检测中已经积累了较多的经验。此课题采用镍铬一镍硅热电偶(K型)其使用温度范围为-2001300。5.2.2 调理电路设计从传感器得到的信号大多要经过调理才能进入数据采集设备,信号调理功能包括放大、滤波、线性化等。由于不同传感器有不同的特性,因此,除了这些通用功能,还要根据具体传感器的特性和要求来设计特殊的信号调理功能。下面仅介绍信号调理的通用功能。5.2.2.1冷端温度补偿电路设计由于连接热电偶与DAQ板卡的引线要一起所谓的参考连接或冷端连接,这种连接如同热电偶一样也要产生输出电压即所谓的参考电压或冷端电压。这样,测量电压就包括了热电偶输出电压和冷端电压两部分。补偿冷端电压的方法就是所谓的冷端补偿。冷端补偿是热电偶测量中信号调理的首要任务。常用的冷端补偿方法有硬件补偿方法和软件补偿。硬件补偿是用一种特殊电路产生适当的电压来抵消冷端电压。因此每种热电偶必须有可在所有环境温度下正常工作的专用补偿电路。这样的补偿电路是非常昂贵的,所以通常采用软件方法进行温度补偿。软件补偿的原理是用另外一个温度传感器直接测量冷端环境温度并根据标准的热电偶表或多项式通过软件计算出计算出所需的补偿电压,然后将测量电压和补偿电压相加,在用标准的热电偶多项式或查表法将补偿后的电压换算成温度值。本设计采用软件冷端温度补偿,选择AD590集成温度传感器检测环境温度。AD590单片集成温度传感器,是电流型集成温度传感器。其温度测量范围为-55150,线性电流输出灵敏度为1uA/k。AD590以热力学温标零点作为输出点,在0时的输出电流为273.2 uA。假设环境温度范围为050,按图5.2所选定的电路参数,该电路的输出灵敏度为100mV/。因为AD590直接测量的是热力学温度(温度单位为k),因此为为了以摄氏温度读出,其输出必须以273.2 uA偏置。令AD590的输出电流流过1k电阻,这样就将1uA/k的电流灵敏度转换为1mV/k的电压灵敏度。在将转换后的输出电压连接到AD524仪表放大器的同相输入端。基准电压芯片AD580输出的2.5V基准电压用电阻分压到273.2mV,接仪表放大器的反相输入端,设置AD524的放大倍数为100,这样,经AD524对两输入差值放大后,就可将050的温度输入变换为05V的电压输出,即该温度测量电路的输出电压灵敏度为100mV/。图5.2 冷端温度补偿电路5.2.2.2信号调理电路设计微弱信号都要进行放大以提高分辨率和降低噪声,使信号调理后的电压范围和采集卡的电压范围相匹配。信号调理电路如图5.3所示:图5.3 系统信号调理电路图信号调理模块应尽可能靠近信号源或传感器,使得信号在受到传输信号的环境噪声影响之前已被放大,使信噪比得到改善。滤波的目的是从所测量的信号中除去不需要的成分。大多数信号调理模块有低通滤波器,用来滤除噪声。通常还需要抗混叠滤波器,滤除信号中感兴趣的最高频率以上的所有频率的信号。某些高性能的数据采集卡自身带有抗混叠滤波器。许多传感器对被测量的响应是非线性的,因而需要对其输出信号进行线性化,以补偿传感器带来的误差。但目前的趋势是,数据采集系统可以利用软件来解决这一问题。5.3 PCI数据采集卡 LabVIEW提供了Measujrement&Automation软件。该软件可以自动检测到与系统(PC机)相连的设备(如DAQ卡、GPIB、VLSA、VXI等硬件产品),并可调用相应设备的设置软件对设备参数进行设置。5.3.1 数据采集卡的功能一个典型的数据采集卡的功能有模拟输入、模拟输出、数字I/O、计数器/计时器等,这些功能分别由相应的电路来实现。模拟输入是采集最基本的功能。它一般由多路开关(MUX)、放大器、采样保持电路以及A/D来实现,通过这些部分,一个模拟信号就可以转化为数字信号。A/D的性能和参数直接影响着模拟输入的质量,要根据实际需要的精度来选择合适的A/D。 模拟输出通常是为采集系统提供激励。输出信号受数模转换器(D/A)的建立时间、转换率、分辨率等因素影响。建立时间和转换率决定了输出信号幅值改变的快慢。建立时间短、转换率高的D/A可以提供一个较高频率的信号。如果用D/A的输出信号去驱动一个加热器,就不需要使用速度很快的D/A,因为加热器本身就不能很快地跟踪电压变化。应该根据实际需要选择D/A的参数指标。 数字I/O通常用来控制过程、产生测试信号、与外设通信等。它的重要参数包括:数字口路数(line)、接收 (发送 )率、驱动能力等。如果输出去驱动电机、灯、开关型加热器等用电器,就不必用较高的数据转换率。路数要能同控制对象配合,而且需要的电流要小于采集卡所能提供的驱动电流。但加上合适的数字信号调理设备,仍可以用采集卡输出的低电流的TTL电平信号去监控高电压、大电流的工业设备。数字I/O常见的应用是在计算机和外设如打印机、数据记录仪等之间传送数据。另外一些数字口为了同步通信的需要还有“握手”线。路数、数据转换速率、“握手”能力都是应理解的重要参数,应依据具体的应用场合而选择有合适参数的数字I/O。 许多场合都要用到计数器,如定时、产生方波等。计数器包括三个重要信号:门限信号、计数信号、输出。门限信号实际上是触发信号使计数器工作或不工作;计数信号也即信号源,它提供了计数器操作的时间基准;输出是在输出线上产生脉冲或方波。计数器最重要的参数是分辨率和时钟频率,高分辨率意味着计数器可以计更多的数,时钟频率决定了计数的快慢,频率越高,计数速度就越快。5.3.2 信号采集系统数据采集是虚拟仪器获取数据的主要方法,被测信号的实时采集,要使用数据采集卡。如图5.4所示的框图说明了被测信号的实时采集原理。图5.4 被测信号实时采集图在框图中,计算机对数据采集卡发出指令,启动采集卡,采集卡将模拟信号转换为数字信号,计算机对采集的数据进行存储、处理和显示。DAQ仪器是一个数据采集系统,而数据采集系统的基本任务是物理信号的产生和测量。要使计算机系统能够测量物理信号,首先要使用传感器把物理信号转换成电压或者电流之类的电信号。通常不能将被测信号直接连接到数据采集卡,而必须使用信号调理电路。根据实际需要,信号调理可以具有滤波、放大等功能,另一方面,一块DAQ卡往往具有多种功能,包括数模转换、模数转换、数字输入输出以及计数器/定时器操作等。数据采集(DAQ)离不开DAQ驱动软件。第一代DAQ驱动软件出现在20世纪80年代后期,随着DAQ技术不断发展,90年代初期Nl推出第二代DAQ驱动软件,随后在2003年Nl推出第三代DAQ驱动软件DAQmx。Nl一DAQmx具有很多的优点,如拥有更简单、更强大的编程接口;有DAQ助手,能进行交互式任务配置和自动代码生成;有并发的DAQ操作功能;能进行更快的单点数据采集;支持即插即用传感器和多种自动化设备的同步等优点。Nl一DAQmx的这些优点为本系统的研究在减少开发时间、降低开发成本和提高测量精度等方面起到事半功倍的作用。5.3.3 数据采集卡的软件配置一般说来,数据采集卡都有自己的驱动程序,该程序控制采集卡的硬件操作,当然这个驱动程序是由采集卡的供应商提供,用户一般无须通过底层就能与采集卡硬件打交道。NI公司还提供了一个数据采集卡的配置工具软件Measurement & Automation Explorer,它可以配置NI公司的软件和硬件,比如执行系统测试和诊断、增加新通道和虚拟通道、设置测量系统的方式、察看所连接的设备等。5.3.4 PCI6221
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!