资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,1,.,椭圆的定义,:,平面中,到两定点,F,1,、,F,2,的距离之和为常数(大于,|,F,1,F,2,|,)的动点的轨迹叫做椭圆。,2.,椭圆的标准方程是:,3.,椭圆中,a,b,c,的关系是,:,当焦点在,X,轴上时,当焦点在,Y,轴上时,温故知新,1,椭圆的简单性质,y,x,o,F,1,F,2,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,一、椭圆的对称性,02:29:10,4,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,5,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,6,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,7,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,8,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,9,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,10,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,11,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,12,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,13,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,14,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,15,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,16,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,17,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,18,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,19,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,20,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,21,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,22,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,23,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,24,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,25,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,26,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,27,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,28,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,29,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,30,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,31,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,32,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,33,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,34,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,02:29:10,35,y,x,o,F,1,F,2,x,2,y,2,=,1,a,2,2,b,36,y,x,o,F,1,F,2,Y,X,O,P,(,x,,,y,),P,2,(,-x,,,y,),P,3,(,-x,,,-y,),P,1,(,x,,,-y,),关于,x,轴对称,关于,y,轴对称,关于原点对称,02:29:10,38,从,图形,上看:,椭圆既是以,x,轴,,y,轴为对称轴的,轴对称,图形,,又是以坐标原点为对称中心的,中心对称,图形。,椭圆的对称中心叫做,椭圆的中心,。,从,方程,上看:,39,y,B,1,A,2,o,B,2,A,1,F,1,F,2,c,a,b,(0,b),(a,,,0),(0,-b),(-a,,,0),a,2,=b,2,+c,2,40,二、椭圆的顶点和范围,椭圆与它的坐标轴的四个,交点,椭圆的,顶点,.,焦点,坐标,(c,,,0),由,长轴,:线段,A,1,A,2,;,长轴长,|A,1,A,2,|=2a,.,短轴,:线段,B,1,B,2,;,短轴长,|B,1,B,2,|=2b.,焦 距,|F,1,F,2,|=2c.,a,和,b,分别叫做椭圆的,长半轴长,和,短半轴长,;,焦点必在长轴上,.,a,2,=b,2,+c,2,,,o,x,y,B,2,(0,b),B,1,(0,-b),A,2,(,a, 0),A,1,(-,a, 0),b,a,c,F,2,F,1,|B,2,F,2,|=,a,;,注意,02:29:10,41,42,1,2,3,-1,-2,-3,-4,4,y,1,2,3,4,5,-1,-5,-2,-3,-4,x,例,1,:根据前面所学性质画出下列图形,(,1,),(,2,),A,1,B,1,A,2,B,2,B,2,A,2,B,1,A,1,椭圆的简单画法:,椭圆四个顶点,连线成图,一个框,四个点,注意光滑和圆扁,莫忘对称要体现,建系,1,2,3,-1,-2,-3,-4,4,y,1,2,3,4,5,-1,-5,-2,-3,-4,x,5,-,5,问题,1,:,圆的形状都是相同的,而椭圆却有些比较“扁”,有些比较“圆”,用什么样的量来刻画椭圆“扁”的程度呢?,三、椭圆的离心率,o,x,y,椭圆的焦距与长轴长的比:,叫做椭圆的离心率。,1,离心率的取值范围:,2,离心率对椭圆形状的影响:,1,),e,越接近,1,,,c,就越接近,a,,,请问,:,此时椭圆的变化情况?,b,就越小,此时椭圆就越扁。,2,),e,越接近,0,,,c,就越接近,0,,,请问,:,此时椭圆又是如何变化的?,b,就越大,此时椭圆就越趋近于圆。,如果,a=b,,则,c=0,,两个焦点重合,椭圆的标准方程就变为圆的方程:,离心率反映椭圆的圆扁程度,离心率,:,因为,a c 0,,所以,0 e c0,,,所以,0 e 1.,离心率越大,椭圆越扁,离心率越小,椭圆越圆,O,x,y,a,b,c,02:29:10,45,思考:,当,e,0,时,曲线是什么?,当,e,1,时,曲线又是 什么?,e,=0,,,圆,e=1,线段,46,02:29:10,47,标准方程,图 象,范 围,对 称 性,顶点坐标,焦点坐标,半 轴 长,焦 距,a,b,c,关系,离 心 率,|x| a,|y| b,|x| b,|y| a,关于,x,轴、,y,轴成轴对称;关于原点成中心对称。,(,a,0,),(0,b,),(,b,0,),(0,a,),(,c,0,),(0, ,c,),长半轴长为,a,短半轴长为,b.,焦距为,2c;,a,2,=b,2,+c,2,02:29:10,48,例,1,已知椭圆方程为,16x,2,+25y,2,=400,它的长轴长是:,。短轴长是,:,。,焦距是,。 离心率等于,:,。,焦点坐标是:,。顶点坐标是:,外切矩形的面积等于:,。,10,8,6,80,分析:椭圆方程转化为标准方程为:,a=5 b=4 c=3,o,x,y,o,x,y,02:29:10,49,02:29:10,02:29:10,强化训练,已知:椭圆的长轴长是短轴长的,3,倍,且过点,A,(,3,,,0,),并且以坐标轴为对称轴,求椭圆的标准方程。,解法一:若椭圆的焦点在,x,轴上,设方程为,由题意得:,椭圆的方程为,若椭圆的焦点在,y,轴上,设方程为,由题意得:,椭圆的方程为,综上所述,椭圆的方程为,02:29:10,52,一、椭圆的几何性质,:,对称性,顶点和范围,离心率,三、体会,分类讨论思想,在求椭圆的标准方程中的应用,二、椭圆性质的应用,课堂小结,作业布置,全品,4748,页,
展开阅读全文