资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,等差、等比数列,数列,na,1,q=,1,q,1,高考数学,25,个必考点,专题复习策略指导,1,等差数列,等比数列,定义,通项公式,k+l=m+n,数列前,n,项和,和的性质,函数形式,a,n,=,a,1,+(,n,1),d,a,n,=,a,m,+(,n,m,),d,a,k,+a,l,=a,m,+a,n,S,m,,S,2m,S,m,,S,3m,S,2m,成,等差,S,m,,S,2m,S,m,,S,3m,S,2m,成,等比,a,k,a,l,=a,m,a,n,S,n,=,An,2,+Bn,a,n,=,a,1,q,n-,1,a,n,=a,m,q,n-m,na,1,q=,1,q,1,S,n,=,A,A,q,n,a,n+1,a,n,=,d,a,n,=p,n,+,q,2,3,4,5,解析,6,解析,7,法二,8,9,10,11,12,例:,在等差数列,a,n,中,已知,a,1,=20,前n项和为S,n,,且S,10,=S,15,,,求当,n,取何值时,S,n,取得最大值,并求出它的最大值.,1020+,d,=1520+,d,,,a,1,=20,S,10,=S,15,,,d,=,解析,当,n,=12或13时,S,n,取得最大值,a,13,=0.,即当,n,12时,,a,n,0,n,14时,,a,n,0.,S,12,=S,13,=1220+,=130.,13,1020+,d,=1520+,d,,,a,1,=20,S,10,=S,15,,,d,=,法二,当,n,=12或13时,S,n,取得最大值,S,12,=S,13,=1220+,=130.,又由S,10,=S,15,得,a,11,+,a,12,+,a,13,+,a,14,+,a,15,=0.,5,a,13,=0,即,a,13,=0.,例:,在等差数列,a,n,中,已知,a,1,=20,前n项和为S,n,,且S,10,=S,15,,,求当,n,取何值时,S,n,取得最大值,并求出它的最大值.,14,1020+,d,=1520+,d,,,a,1,=20,S,10,=S,15,,,d,=,法三,当,n,=12或13时,S,n,取得最大值,S,12,=S,13,=1220+,=130.,例:,在等差数列,a,n,中,已知,a,1,=20,前n项和为S,n,,且S,10,=S,15,,,求当,n,取何值时,S,n,取得最大值,并求出它的最大值.,15,变:,设等差数列,a,n,的前,n,项和为,S,n,,已知,a,3,12,,,S,12,0,,,S,13,0.,(1),求公差,d,的取值范围;,(2),指出,S,1,、,S,2,、,、,S,12,中哪一个值最大,说明理由,(2),S,12,6(,a,1,a,12,),6(,a,6,a,7,),0,,,a,6,0,且,a,7,0,,故,S,6,最大,16,变:,设等差数列,a,n,的前,n,项和为,S,n,,已知,a,3,12,,,S,12,0,,,S,13,0.,(1),求公差,d,的取值范围;,(2),指出,S,1,、,S,2,、,、,S,12,中哪一个值最大,说明理由,(2),等差数列,a,n,的前,n,项和为,S,n,,,S,n,=,An,2,+Bn,,作出图像:,对称轴介于,6,到,6.5,之间,,故,S,6,最大,x,y,O,12,13,17,see you!,18,
展开阅读全文