2020年-高中数学-必修第一册-第三章-3.1.1-函数的概念-ppt课件-(新人教A版)

上传人:29 文档编号:252520528 上传时间:2024-11-16 格式:PPTX 页数:30 大小:1.04MB
返回 下载 相关 举报
2020年-高中数学-必修第一册-第三章-3.1.1-函数的概念-ppt课件-(新人教A版)_第1页
第1页 / 共30页
2020年-高中数学-必修第一册-第三章-3.1.1-函数的概念-ppt课件-(新人教A版)_第2页
第2页 / 共30页
2020年-高中数学-必修第一册-第三章-3.1.1-函数的概念-ppt课件-(新人教A版)_第3页
第3页 / 共30页
点击查看更多>>
资源描述
3.1.1,第,1,课时 函数的概念,高中数学 新人教,A,版,同步精品课件,2020,必修第一册,第三章 函数概念与性质,3.1.1 第1课时 函数的概念 高中数学 新人教A版 20,2020年-高中数学-必修第一册-第三章-3,一,二,一、函数的概念,1,.,(1),初中我们已经学习过函数的概念,它是如何用函数描述变量之间的依赖关系的呢,?,提示,:,在一个变化过程中,有两个变量,x,和,y,如果给定了一个,x,值,相应地就确定唯一的一个,y,值,那么我们称,y,是,x,的函数,其中,x,是自变量,y,是因变量,.,(2),教材,P60,中的问题,1,你能得出列车运行,0,.,1 h,0,.,2 h,0,.,5 h,时列车行进的路程吗,?,t,的变化范围是多少,?,变量,t,与变量,S,之间有什么关系,?,提示,:,列车运行,0,.,1,h,0,.,2,h,0,.,5,h,时列车行进的路程分别为,35,km,70,km,175,km,.,其中,t,的变化范围是,0,t,0,.,5,.,在,t,的变化范围内,任给一个,t,按照给定的关系式,都有唯一的一个路程,S,与之对应,.,三,一二一、函数的概念三,一,二,(3),教材,P61,中的问题,2,与问题,1,有什么区别,?,提示,:,两个问题中自变量的取值范围不同,从而因变量取值也不相同,.,(4),教材,P61,中的问题,3,你能从图中看出大约哪个时刻空气质量最差吗,?,哪个时刻,AQI,的值大约为,50?,提示,:,从图中可以看出,大约,10:00,时空气质量最差,.,大约,8:00,和,15:00,这两个时刻,AQI,的值大约为,50,.,(5),教材,P61,中的问题,4,自变量的取值集合是什么,?,提示,:,2,006,2,007,2,008,2,009,2,010,2,011,2,012,2,013,2,014,2,015,.,这是一个数集,.,三,一二(3)教材P61中的问题2与问题1有什么区别?三,一,二,(6),由初中函数定义可知上述问题,1,4,都是函数,它们有哪些共同特征,?,提示,:,(1),每个问题中的变量均涉及两个非空数集,用,A,B,来表示,;,(2),两个数集间都有一种确定的对应关系,在此关系下,对于数集,A,中任意一个,x,数集,B,中都有唯一确定的数,y,和它对应,.,2,.,填表,三,一二(6)由初中函数定义可知上述问题14都是函数,它们有哪,一,二,3,.,一个函数的构成有哪些要素,?,起决定作用的是哪些,?,为什么,?,提示,:,定义域,A,、对应关系,f,和值域,f,(,x,),|x,A,共三个要素,.,起决定作用的是函数对应关系和定义域,因为函数的值域由函数的定义域和对应关系确定,当两个函数的定义域和对应关系相同时,值域一定相同,.,4,.,在函数的定义中,值域与集合,B,有怎样的关系,?,提示,:,值域是集合,B,的子集,.,5,.,新的函数定义与传统的函数定义有什么异同,?,提示,:,两个定义中的定义域与值域的意义完全相同,;,两个定义中的对应关系实际上也一样,只不过叙述的出发点不同,初中的定义是从运动变化的观点出发,新定义的对应关系是从集合与对应的观点出发,.,三,一二3.一个函数的构成有哪些要素?起决定作用的是哪些?为什么,一,二,6,.,判断正误,:,(1),对应关系与值域都相同的两个函数是相等函数,.,(,),(2),函数的值域中每个数在定义域中都只存在一个数与之对应,.,(,),答案,:,(1),(2),三,一二6.判断正误:三,一,二,二、区间的概念及表示,1,.,阅读,教材,P64,相关内容,关于区间的概念,请填写下表,:,设,a,b,R,且,aa,x,a,xa,xa,xa如何用区间表,一,二,4,.,做一做,:,用区间表示下列集合,:,(1),x|,2,1,且,x,2,用区间表示为,;,(3),x|x-,3,或,x,10,用区间表示为,.,解析,:,(1),x|,2,1,且,x,2,用区间表示为,(1,2),(2,+,),.,答案,:,(1)(2,4,(2)(1,2),(2,+,),(3)(,-,-,3),10,+,),三,一二4.做一做:三,一,二,三,三、同一个函数,1,.,(1),一个函数有自变量和因变量两个变量,两个变量和对应关系可以用任意的字母表示,如,f,(,x,),=,2,x,f,(,t,),=,2,t,g,(,a,),=,2,a,等,那么,不同的字母表示对两个函数是否为同一个函数有影响吗,?,提示,:,自变量、因变量和对应关系用什么字母表示与函数无关,不影响两个函数的关系,.,如,f,(,x,),=,2,x,f,(,t,),=,2,t,g,(,a,),=,2,a,只要自变量取值范围相同,它们就是同一个函数,.,一二三三、同一个函数,一,二,三,(2),如何理解,“,当两个函数的定义域相同,并且对应关系完全一致时,两个函数才是同一个函数,”,这句话,?,提示,:,这句话说明,:(1),定义域不同,两个函数也就不同,;(2),对应关系不同,两个函数也就不相同,;(3),即使定义域和值域都分别相同的两个函数,它们也不一定是同一个函数,.,例如,:,函数,y=,2,x,和函数,y=x-,1,其定义域都是,R,值域都是,R,.,但它们的对应关系是不同的,因此这两个函数不是同一个函数,.,2,.,填空,如果两个函数的,定义域,相同,并且,对应关系,完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数,.,一二三(2)如何理解“当两个函数的定义域相同,并且对应关系完,一,二,三,3,.,做一做,已知函数,f,(,x,),=|x|,则下列哪个函数与,y=f,(,x,),表示同一个函数,(,),答案,:,B,一二三3.做一做,探究一,探究二,探究三,探究四,思想方法,随堂演练,函数,的定义,例,1,下列对应是实数集,R,到,R,上的一个函数的是,.,(,只填序号,),答案,:,反思感悟,结合函数的定义,对集合,A,中任意一个,x,判断在集合,B,中是否有唯一确定的,y,值与之对应,.,探究一探究二探究三探究四思想方法随堂演练函数的定义,探究一,探究二,探究三,探究四,思想方法,随堂演练,变式训练,1,集合,A=,x|,0,x,4,B=,y|,0,y,2,下列不表示从,A,到,B,的函数的是,(,),答案,:,C,探究一探究二探究三探究四思想方法随堂演练变式训练 1集合A=,探究一,探究二,探究三,探究四,思想方法,区间,例,3,已知,集合,A=,x|,5,-x,0,集合,B=,x|x|-,30,则,A,B,用区间可表示为,.,解析,:,A=,x|,5,-x,0,A=,x|x,5,.,B=,x|x|-,30,B=,x|x,3,.,A,B=,x|x-,3,或,-,3,x,3,或,3,x,5,即,A,B=,(,-,-,3),(,-,3,3),(3,5,.,答案,:,(,-,-,3),(,-,3,3),(3,5,反思感悟,(1),正确利用区间表示集合,要特别注意区间的端点值能否取到,即,“,小括号,”,和,“,中括号,”,的区别,.,(2),用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示,.,随堂演练,探究一探究二探究三探究四思想方法区间随堂演练,探究一,探究二,探究三,探究四,思想方法,变式训练,2,(1,),集合,x|,0,x,1,或,2,x,11,用区间表示为,.,(2),若集合,A=,2,a-,1,a+,2,则实数,a,的取值范围用区间表示为,.,解析,:,(2),由区间的定义知,区间,(,a,b,)(,或,a,b,),成立的条件是,ab.,A=,2,a-,1,a+,2,2,a-,1,a+,2,.,a,3,实数,a,的取值范围是,(,-,3),.,答案,:,(1)(0,1),2,11,(2)(,-,3),随堂演练,探究一探究二探究三探究四思想方法变式训练 2(1)集合x|,探究一,探究二,探究三,探究四,思想方法,求,函数的定义域,例,3,求,下列函数的定义域,:,分析,:,观察函数解析式的特点,列不等式,(,组,),求自变量的取值,范围,随堂演练,探究一探究二探究三探究四思想方法求函数的定义域随堂演练,探究一,探究二,探究三,探究四,思想方法,反思感悟,求,函数的定义域时,常有以下几种情况,:,(1),如果函数,f,(,x,),是整式,那么函数的定义域是实数集,R,;,(2),如果函数,f,(,x,),是分式,那么函数的定义域是使分母不等于零的实数组成的集合,;,(3),如果函数,f,(,x,),是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合,;,(4),如果函数,f,(,x,),是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合,(,即求各式子自变量取值集合的交集,),.,随堂演练,探究一探究二探究三探究四思想方法反思感悟求函数的定义域时,常,探究一,探究二,探究三,探究四,思想方法,随堂演练,探究一探究二探究三探究四思想方法随堂演练,探究一,探究二,探究三,探究四,思想方法,同,一个函数,例,4,试判断以下各组函数是否表示同,一,个,函数,:,(2),y=x,0,与,y=,1(,x,0);,(3),y=,2,x+,1(,x,Z,),与,y=,2,x-,1(,x,Z,),.,分析,:,判断两个函数,f,(,x,),和,g,(,x,),是否是同一个函数的方法是,:,先求函数,f,(,x,),和,g,(,x,),的定义域,如果定义域不同,那么它们不是同一个函数,;,如果定义域相同,再化简函数的表达式,如果化简后的函数表达式相同,那么它们是同一个函数,否则它们不是,.,随堂演练,探究一探究二探究三探究四思想方法同一个函数(2)y=x0与y,探究一,探究二,探究三,探究四,思想方法,所以它们不表示同,一,个,函数,.,(2),因为,y=x,0,要求,x,0,且当,x,0,时,y=x,0,=,1,故,y=x,0,与,y=,1(,x,0),的定义域和对应关系都相同,所以它们表示同,一,个,函数,.,(3),y=,2,x+,1(,x,Z,),与,y=,2,x-,1(,x,Z,),两个函数的定义域相同,但对应关系不相同,故它们不表示同,一,个,函数,.,随堂演练,探究一探究二探究三探究四思想方法所以它们不表示同一个函数.随,探究一,探究二,探究三,探究四,思想方法,反思感悟,判断,两个函数是否表示同,一,个,函数,的两个,步骤,随堂演练,探究一探究二探究三探究四思想方法反思感悟判断两个函数是否表示,探究一,探究二,探究三,探究四,思想方法,变式,训练,4,下列,各组函数,:,f,(,x,),=x+,1,g,(,x,),=x+x,0,;,汽车匀速运动时,路程与时间的函数关系,f,(,t,),=,80,t,(0,t,5),与一次函数,g,(,x,),=,80,x,(0,x,5),.,其中,是同一个函,函数,的是,(,填上所有正确的序号,),.,随堂演练,探究一探究二探究三探究四思想方法变式训练4下列各组函数:,探究一,探究二,探究三,探究四,思想方法,解析,:,f,(,x,),与,g,(,x,),的定义域不同,不是同一个函数,;,f,(,x,),与,g,(,x,),的解析式不同,不是同一个函数,;,f,(,x,),=|x+,3,|,与,g,(,x,),的解析式不同,不是同一个函数,;,f,(,x,),与,g,(,x,),的定义域不同,不是同一个函数,;,f,(,x,),与,g,(,x,),的定义域、值域、对应关系都相同,是同一个函数,.,答案,:,随堂演练,探究一探究二探究三探究四思想方法解析:f(x)与g(x)的,探究一,探究二,探究三,探究四,思想方法,随堂演练,用逆向思维解决函数定义域,(,或值域,),问题,分析,:,把求函数定义域问题转化为方程,ax,2,+,4,ax+,3,=,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!