资源描述
专题限时集训(九) 第9讲数列的概念与表示、等差数列与等比数列(时间:45分钟)1已知an为等差数列,且a72a41,a30,则公差d()A2 BC. D22若1,a,3成等差数列,1,b,4成等比数列,则的值为()A B.C1 D13设Sn为等差数列an的前n项和,若a21,a45,则S5等于()A7 B15C30 D314已知各项均为正数的等比数列an,满足a1a916,则a2a5a8的值为()A16 B32C48 D645公差不为零的等差数列an中,a2,a3,a6成等比数列,则其公比为()A1 B2C3 D46等差数列an中,a5a64,则log2(2a12a22a10)()A10 B20C40 D2log257在等比数列an中,a11,公比|q|1.若ama1a2a3a4a5,则m()A9 B10C11 D128设等比数列an的前n项和为Sn,若a33S21,a23S11,则公比q()A1 B2C4 D89已知an是公差为d的等差数列,若3a6a3a4a512,则d_.10已知等比数列an的首项为2,公比为2,则_.11数列an中,a12,当n为奇数时,an1an2;当n为偶数时,an12an则a9_.12已知等比数列an的前n项和为Sn,a11,且S1,2S2,3S3成等差数列(1)求数列an的通项公式;(2)设bnann,求数列bn的前n项和Tn.13等差数列an的各项均为正数,其前n项和为Sn,满足2S2a2(a21),且a11.(1)求数列an的通项公式;(2)设bn,求数列bn的最小值项14已知等差数列an(nN)中,an1an,a2a9232,a4a737.(1)求数列an的通项公式;(2)若将数列an的项重新组合,得到新数列bn,具体方法如下:b1a1,b2a2a3,b3a4a5a6a7,b4a8a9a10a15,依此类推,第n项bn由相应的an中2n1项的和组成,求数列的前n项和Tn.专题限时集训(九)【基础演练】1B解析 a72a41,a30,得得2D解析 2a4,a2,b24,b2,1.3B解析 由等差数列通项公式得:512d,d2,a11,S515.4D解析 等比数列an,a1a9a2a8a16,各项均为正数,a54,a2a5a8a4364.即a2a5a8的值为64.【提升训练】5C解析 设公差为d,则(a12d)2(a1d)(a15d),即d22a1d0,又d0,所以d2a1,等比数列的公比为3.6B解析 log2(2a12a22a10)a1a2a105(a5a6)20.7C解析 由ama1a2a3a4a5得a1qm1a(a1q2)5,又a11,所以qm1q10,解得m11,故选C.8C解析 两式相减得a3a23a2,即a34a2,所以q4.92解析 3a6a3a4a5123(a15d)a12da13da14d126d12,所以d2.104解析 an2n,所以224.1192解析 由题意,得a2a124,a38,a410,a520,a622,a744,a846,a992.12解:(1)设数列an的公比为q,若q1,则S1a11,2S24a14,3S39a19,故S13S31022S2,与已知矛盾,故q1,从而得Sn,由S1,2S2,3S3成等差数列,得S13S322S2,即134,解得q,所以ana1qn1n1.(2)由(1)得,bnannn1n,所以Tn(a11)(a22)(ann)Sn(12n).13解:(1)由2S2aa2,可得2(a1a1d)(a1d)2(a1d)又a11,可得d1或d2(舍去)故数列an是首项为1,公差为1的等差数列,ann.(2)根据(1)得Sn,bnn1.由于函数f(x)x(x0)在(0,)上单调递减,在,)上单调递增,而3an,舍去),设公差为d,则解得所以数列an的通项公式为an3n2(nN)(2)由题意得:bna2n1a2n11a2n12a2n12n11(32n12)(32n15)(32n18)32n1(32n11)2n132n1258(32n14)(32n11),而258(32n14)(32n11)是首项为2,公差为3的等差数列的前2n1项的和,所以258(32n14)(32n11)2n123322n32n.所以bn322n2322n32n22n2n,所以bn2n22n,所以Tn(4166422n)(4n1)
展开阅读全文