新人教版九年级数学上册第二十五章概率初步全章教案.doc

上传人:小** 文档编号:16613612 上传时间:2020-10-19 格式:DOC 页数:20 大小:286.50KB
返回 下载 相关 举报
新人教版九年级数学上册第二十五章概率初步全章教案.doc_第1页
第1页 / 共20页
新人教版九年级数学上册第二十五章概率初步全章教案.doc_第2页
第2页 / 共20页
新人教版九年级数学上册第二十五章概率初步全章教案.doc_第3页
第3页 / 共20页
点击查看更多>>
资源描述
第二十五章 概 率课题: 25.1 随机事件(一) 教学目标:知识技能目标 了解必然发生的事件、不可能发生的事件、随机事件的特点.数学思考目标学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.解决问题目标能根据随机事件的特点,辨别哪些事件是随机事件.情感态度目标引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名. 【师生行为】 教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球. 学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点. 【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.归纳总结作业:P131132,13题。课题: 25.1 随机事件(二) 教学目标:知识技能目标 了解必然发生的事件、不可能发生的事件、随机事件的特点.数学思考目标学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.解决问题目标能根据随机事件的特点,辨别哪些事件是随机事件.情感态度目标引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程【问题情境】情境1 5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签. 情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【师生行为】学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.【问题情境】 请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【师生行为】教师引导学生充分交流,热烈讨论.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.【问题情境】李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.【师生行为】教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力. 【设计意图】有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.【问题情境】归纳、小结布置作业P13247题。课题: 25.1.2 概率的意义(一)教学目标:一知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义二教学思考让学生经历猜想试验-收集数据-分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.三解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.四情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢? 由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.二 、动手实践,合作探究1教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上” 的频数及 “正面朝上”的频率,整理试验的数据,并记录下来.2教师巡视学生分组试验情况.注意:(1)观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2)要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验。4全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.表25-2抛掷次数50100150200250300350400450500“正面向上”的频数 “正面向上”的频率 0.51正面向上的频率投掷次数n10050250150500450300350200图25.1-1想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律? 注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3试验者抛掷次数(n)“正面朝上”次数(m)“正面向上”频率(m/n)棣莫弗204810610.518布丰404020480.5069费勒1000049790.4979皮尔逊1200060190.5016皮尔逊24000120120.50055.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.作业:P137138,13题。课题: 25.1.2 概率的意义(二)教学目标:一知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义二教学思考让学生经历猜想试验-收集数据-分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.三解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.四情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p. 注意指出:1概率是随机事件发生的可能性的大小的数量反映.2概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.四练习巩固,发展提高. 学生练习1书上P143.练习.1. 巩固用频率估计概率的方法.2书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五归纳总结,交流收获:1学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1) 完成P132(2) 习题25.第47题 课题: 25.2 列举法求概率(一)教学目标:知识与技能目标 学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。过程与方法目标 经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。情感与态度目标 通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。教学重点:习运用列表法或树形图法计算事件的概率。教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。教学过程1.创设情景,发现新知 教材是通过P151P152的例5、例6来介绍列表法和树形图法的。例5(教材P151):同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。(1)创设情景引例:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同)。每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)。作为游戏者,你会选择哪个装置呢?并请说明理由。168A457B图2 联欢晚会游戏转盘 (2)学生分组讨论,探索交流在这个环节里,首先要求学生分组讨论,探索交流。然后引导学生将实际问题转化为数学问题,即:“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”由于事件的随机性,我们必须考虑事件发生概率的大小。此时我首先引导学生观看转盘动画,同学们会发现这个游戏涉及A、B两转盘, 即涉及2个因素,与前一课所讲授单转盘概率问题(教材P148例2)相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。怎样避免这个问题呢?实际上,可以将这个游戏分两步进行。 于是,指导学生构造表格(3)指导学生构造表格A B457168首先考虑转动A盘:指针可能指向1,6,8三个数字中的任意一个,可能出现的结果就会有3个。接着考虑转动B盘:当A盘指针指向1时,B盘指针可能指向4、5、7三个数字中的任意一个,这是列举法的简单情况。当A盘指针指向6或8时,B盘指针同样可能指向4、5、7三个数字中的任意一个。一共会产生9种不同的结果。【设计意图】这样既分散了难点,又激发了学生兴趣,渗透了转化的数学思想。(4)学生独立填写表格,通过观察与计算,得出结论(即列表法)A B4571(1,4)(1,5)(1,7)6(6,4)(6,5)(6,7)8(8,4)(8,5)(8,7)从表中可以发现:A盘数字大于B盘数字的结果共有5种。P(A数较大)= , P(B数较大)=. P(A数较大) P(B数较大) 选择A装置的获胜可能性较大。在学生填写表格过程中,注意向学生强调数对的有序性。由于游戏是分两步进行的,我们也可用其他的方法来列举。即先转动盘,可能出现1,6,8三种结果;第二步考虑转动盘,可能出现4,5,7三种结果。168开始A装置457457457B装置(5)解法二: 由图知:可能的结果为: (1,4),(1,5),(1,7),(6,4),(6,5),(6,7),(8,4),(8,5),(8,7)。共计9种。P(A数较大)= , P(B数较大)=. P(A数较大) P(B数较大) 选择A装置的获胜可能性较大。然后,引导学生对所画图形进行观察:若将图形倒置,你会联想到什么?这个图形很像一棵树,所以称为树形图(在幻灯片上放映)。列表和树形图是列举法求概率的两种常用的方法。作业:P137138.1、2、3题。课题: 25.2 列举法求概率教学目标:知识与技能目标 学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。过程与方法目标 经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。情感与态度目标 通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。教学重点:习运用列表法或树形图法计算事件的概率。教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。2.自主分析,再探新知通过引例的分析,学生对列表法和树形图法求概率有了初步的了解,为了帮助学生熟练掌握这两种方法,我选用了下列两道例题(本节教材P151P152的例5和例6)。例1:同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。例1是教材上一道“掷骰子”的问题,有了引例作基础,学生不难发现:引例涉及两个转盘,这里涉及两个骰子,实质都是涉及两个因素。于是,学生通过类比列出下列表。 第2个第1个1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可以看出,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。由所列表格可以发现:(1)满足两个骰子的点数相同(记为事件A)的结果有6个,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)=。满足条件的结果在表格的对角线上(2)满足两个骰子的点数的和是9(记为事件B)的结果有4个,即(3,6),(4,5),(5,4),(6,3),所以P(B)=。满足条件的结果在(3,6)和(6,3)所在的斜线上(3)至少有一个骰子的点数为2(记为事件C)的结果有11个,所以P(C)=。满足条件的结果在数字2所在行和2所在的列上接着,引导学生进行题后小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法。运用列表法求概率的步骤如下:列表 ; 通过表格计数,确定公式P(A)=中m和n的值;利用公式P(A)=计算事件的概率。分析到这里,我会问学生:“例1题目中的“掷两个骰子”改为“掷三个骰子”,还可以使用列表法来做吗?”由此引出下一个例题。例2: 甲口袋中装有2个相同的球,它们分别写有字母A和B;乙口袋中3个相同的球,它们分别写有字母C、D和E;丙口袋中2个相同的球,它们分别写有字母H和I。从三个口袋中各随机地取出1个球。(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?例2与前面两题比较,有所不同:要从三个袋子里摸球,即涉及到3个因素。此时同学们会发现用列表法就不太方便,可以尝试树形图法。本游戏可分三步进行。分步画图和分类排列相关的结论是解题的关键。ACDEHIHIHIBCDEHIHIHI甲乙丙从图形上可以看出所有可能出现的结果共有12个,即:ACHACIADHADIAEHAEIBCHBDHBDIBEHBEIBCI(幻灯片上用颜色区分)这些结果出现的可能性相等。(1)只有一个元音字母的结果(黄色)有5个,即ACH,ADH,BCI,BDI,BEH,所以;有两个元音的结果(白色)有4个,即ACI,ADI,AEH,BEI,所以;全部为元音字母的结果(绿色)只有1个,即AEI ,所以。(2)全是辅音字母的结果(红色)共有2个,即BCH,BDH,所以。通过例2的解答,很容易得出题后小结:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”。运用树形图法求概率的步骤如下:(幻灯片)画树形图 ; 列出结果,确定公式P(A)=中m和n的值;利用公式P(A)=计算。3.应用新知,深化拓展为了检验学生对列表法和画树形图法的掌握情况,提高应用所学知识解决问题的能力,在此我选择了教材P154课后练习作为随堂练习。(1)经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同。三辆汽车经过这个十字路口,求下列事件的概率:三辆车全部继续前行;两辆车向右转,一辆车向左转;至少有两辆车向左转。随堂练习(1)是一道与实际生活相关的交通问题,可用树形图法来解决。(2)在6张卡片上分别写有16的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?通过解答随堂练习(2),学生会发现列出的表格和例1的表格完全一样。不同的是:变换了实际背景,设置的问题也不一样。这时,我提出:我们是否可以根据这个表格再编一道用列举法求概率的题目来呢?为了进一步拓展思维,我向学生提出了这样一个问题,供学生课后思考。;4.归纳总结,形成能力我将引导学生从知识、方法、情感三方面来谈一谈这节课的收获。要求每个学生在组内交流,派小组代表。5.布置作业,巩固提高考虑到学生的个体差异,为促使每一个学生得到不同的发展,同时促进学生对自己的学习进行反思,在第五个环节“布置作业,巩固提高”里作如下安排:(1)必做题:书本P154/ 3,P155/ 4,253 利用频率估计概率疑难分析:1当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率2利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动这个稳定值P,叫做随机事件A的概率,并记为P(A)=P3利用频率估计出的概率是近似值.例题选讲例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n8101291610进球次数m6897127进球频率(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值例2 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率(2) 请估计,当很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1) 解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;(2)0.69;(3)0.69;(4)0.69360248评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率基础训练一、选一选(请将唯一正确答案的代号填入题后的括号内)1盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A90个 B24个 C70个 D32个2从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( )A B C D3下列说法正确的是( )A抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C彩票中奖的机会是1,买100张一定会中奖;D中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100,于是他得出全市拥有空调家庭的百分比为100的结论4小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1351从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是( )A、 B、 C、 D、5某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( )A10粒 B160粒 C450粒 D500粒6某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是,这个的含义是( )A只发出5份调查卷,其中三份是喜欢足球的答卷;B在答卷中,喜欢足球的答卷与总问卷的比为38;C在答卷中,喜欢足球的答卷占总答卷的;D在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球7要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为,四位同学分别采用了下列装法,你认为他们中装错的是( )A口袋中装入10个小球,其中只有两个红球;B装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C装入红球5个,白球13个,黑球2个;D装入红球7个,白球13个,黑球2个,黄球13个 8某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是( )A 2元 B5元 C6元 D0元二、填一填9 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果第一组第二组第三组第四组第五组第六组两个正面335142一个正面655557没有正面120411由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是_当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:_10红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上组别频数频率46 504051 558056 6016061 658066 703071 7510从中任选一头猪,质量在65kg以上的概率是_11为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:组别分 组频 数频率149.559.5600.12259.569.51200.24369.579.51800.36479.589.5130c589.599.5b0.02合 计a1.00表中a=_,b=_, c_;若成绩在90分以上(含90分)的学生获一等奖,估计全市获一等奖的人数为_三、做一做12小颖有20张大小相同的卡片,上面写有120这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:实验次数204060801001201401601802003的倍数的频数51317263236394955613的倍数的频率(1)完成上表;(2)频率随着实验次数的增加,稳定于什么值左右?(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?13甲、乙两同学开展“投球进筐”比赛,双方约定: 比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束; 若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都未进,该局也结束; 计分规则如下:a. 得分为正数或0;b. 若8次都未投进,该局得分为0;c. 投球次数越多,得分越低;d.6局比赛的总得分高者获胜 .(1) 设某局比赛第n(n=1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n换算为得分M的计分方案;(2) 若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“”表示该局比赛8次投球都未进):第一局第二局第三局第四局第五局第六局甲54813乙82426四、试一试16理论上讲,两个随机正整数互质的概率为P=请你和你班上的同学合作,每人随机写出若干对正整数(或自己利用计算器产生),共得到n对正整数,找出其中互质的对数m,计算两个随机正整数互质的概率,利用上面的等式估算13解:(1)计分方案如下表:n(次)12345678M(分)87654321 - - 20 - -
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!