资源描述
第48练 数列小题综合练基础保分练1.在数列an中,a12,an11,则a2019的值为_.2.在等差数列an中,a1a4a745,a2a5a829,则a3a6a9_.3.已知数列an是公差为2的等差数列,且a1,a2,a5成等比数列,则a2为_.4.已知数列an的通项公式为ann2kn,请写出一个能说明“若an为递增数列,则k1”是假命题的k的值_.5.数列an满足an1an(1)nn,则数列an的前20项的和为_.6.已知数列an的通项公式ann,则|a1a2|a2a3|a99a100|_.7.以Sn,Tn分别表示等差数列an,bn的前n项和,若,则的值为_.8.已知等差数列an的前n项和为Sn,a55,S836,则数列的前n项和为_.9.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.记此数列为an,则a2019_.10.已知数列an满足:an(1)nan1n(n2),记Sn为an的前n项和,则S40_.能力提升练1.已知数列an中,an0,a11,an2,a100a96,则a2018a3_.2.设等差数列an的前n项和为Sn,若S410,S515,则a4的最大值为_.3.已知每项均大于零的数列an中,首项a11且前n项和Sn满足SnSn12(nN*且n2),则a81_.4.已知数列an满足a1,an1aan1,则m的答案精析基础保分练1.2.133.34.(1,3)内任意一个实数均可5.1006.1627.8.解析设等差数列an的首项为a1,公差为d.a55,S836,ann,则,数列的前n项和为1.9.410.440解析由an(1)nan1n(n2)可得:当n2k时,有a2ka2k12k,当n2k1时,有a2k1a2k22k1,当n2k1时,有a2k1a2k2k1,得a2ka2k24k1,得a2k1a2k11,则S40(a1a3a5a7a39)(a2a4a6a8a40)110(71523)107108440.能力提升练1.解析a11,an2,a3.a100a96,a96a100,整理得aa9610,解得a96或a96,an0,a96.a98,a100,a2018.a2018a3.2.4解析因为S42(a2a3),所以a2a35,又S55a3,所以a33,而a43a3(a2a3),故a44,当a22,a33时等号成立,所以a4的最大值为4.3.640解析因为SnSn12,所以2,即为等差数列,首项为1,公差为2,所以12(n1)2n1,所以Sn(2n1)2,因此a81S81S8016121592640.4.2解析由a1,an1aan1得an1an(an1)20,所以数列an为单调递增数列,an11an(an1),所以,所以m3.因为a11,an1an(an1)20,a21,a31,a412,所以a20202,01,233,所以m的整数部分是2.5.解析由题意得a12a22n1ann2n1,所以a12a22n2an1(n1)2n(n2),相减得2n1ann2n1(n1)2n,所以an2n2,n1也满足.因此数列ankn的前n项和为Snn(4k2n2kn)n(6k2nkn),所以所以k.6.8解析设等差数列an的公差为d,bna3n2a3n1a3n,b1a1a2a36,b2a4a5a69,b2b13d3d3d96,解得d,a1a1a16,解得a1,Snna1dnn(n1),bna3n2a3n1a3n(3n21)(3n11)(3n1)3n33(n1),8,当且仅当n3时取等号,故答案为8.6
展开阅读全文