资源描述
精选高中模拟试卷道孚县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 对于区间a,b上有意义的两个函数f(x)与g(x),如果对于区间a,b中的任意数x均有|f(x)g(x)|1,则称函数f(x)与g(x)在区间a,b上是密切函数,a,b称为密切区间若m(x)=x23x+4与n(x)=2x3在某个区间上是“密切函数”,则它的一个密切区间可能是( )A3,4B2,4C1,4D2,32 下列函数中,与函数的奇偶性、单调性相同的是( )A B C D3 在平面直角坐标系中,直线y=x与圆x2+y28x+4=0交于A、B两点,则线段AB的长为( )A4B4C2D24 设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(3)的值为( )A2B4C0D45 已知全集为R,集合A=x|()x1,B=x|x26x+80,则A(RB)=( )Ax|x0Bx|2x4Cx|0 x2或x4Dx|0 x2或x46 +(a4)0有意义,则a的取值范围是( )Aa2B2a4或a4Ca2Da47 下列正方体或四面体中,、分别是所在棱的中点,这四个点不共面的一个图形是( )8 设偶函数f(x)满足f(x)=2x4(x0),则x|f(x2)0=( )Ax|x2或x4Bx|x0或x4Cx|x0或x6Dx|0 x4 9 在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2=bc,sinC=2sinB,则A=( )A30B60C120D15010直角梯形中,直线截该梯形所得位于左边图形面积为,则函数的图像大致为( ) 11若函数f(x)是奇函数,且在(0,+)上是增函数,又f(3)=0,则(x2)f(x)0的解集是( )A(3,0)(2,3)B(,3)(0,3)C(,3)(3,+)D(3,0)(2,+)12已知点A(2,0),点M(x,y)为平面区域上的一个动点,则|AM|的最小值是( )A5B3C2D二、填空题13如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔间的距离为km14袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为15【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两个零点,则正实数的值为_16函数f(x)=的定义域是17在三棱柱ABCA1B1C1中,底面为棱长为1的正三角形,侧棱AA1底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为,则sin的值是18一质点从正四面体ABCD的顶点A出发沿正四面体的棱运动,每经过一条棱称为一次运动第1次运动经过棱AB由A到B,第2次运动经过棱BC由B到C,第3次运动经过棱CA由C到A,第4次经过棱AD由A到D,对于Nn*,第3n次运动回到点A,第3n+1次运动经过的棱与3n1次运动经过的棱异面,第3n+2次运动经过的棱与第3n次运动经过的棱异面按此运动规律,质点经过2015次运动到达的点为三、解答题19数列an满足a1=,an(,),且tanan+1cosan=1(nN*)()证明数列tan2an是等差数列,并求数列tan2an的前n项和;()求正整数m,使得11sina1sina2sinam=1 20(本小题满分12分)在ABC中,A,B,C所对的边分别是a、b、c,不等式x2cos C4xsin C60对一切实数x恒成立.(1)求cos C的取值范围;(2)当C取最大值,且ABC的周长为6时,求ABC面积的最大值,并指出面积取最大值时ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.21已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程22如图,在ABC中,BC边上的中线AD长为3,且sinB=,cosADC=()求sinBAD的值;()求AC边的长23(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残存的农药y(单位:微克)的统计表: xi12345yi5753403010(1)在下面的坐标系中,描出散点图,并判断变量x与y的相关性;(2)若用解析式ycx2d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ix,有下列数据处理信息:11,38,(i)(yi)811, (i)2374,对于一组数据(x1,y1),(x2,y2),(xn,yn),其回归直线方程ybxa的斜率和截距的最小二乘估计分别为 (3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水(结果保留1位有效数字)24(本题12分)如图,是斜边上一点,.(1)若,求;(2)若,求角.道孚县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:m(x)=x23x+4与n(x)=2x3,m(x)n(x)=(x23x+4)(2x3)=x25x+7令1x25x+71,则有,2x3故答案为D【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题2 【答案】A【解析】试题分析:所以函数为奇函数,且为增函数.B为偶函数,C定义域与不相同,D为非奇非偶函数,故选A.考点:函数的单调性与奇偶性3 【答案】A【解析】解:圆x2+y28x+4=0,即圆(x4)2+y2 =12,圆心(4,0)、半径等于2由于弦心距d=2,弦长为2=4,故选:A【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题4 【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=x,则f(x)+f(x)=f(0)=0,所以,f(x)=f(x),所以,函数f(x)为奇函数又f(3)=4,所以,f(3)=f(3)=4,所以,f(0)+f(3)=4故选:B【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题5 【答案】C【解析】解:1=,x0,A=x|x0;又x26x+80(x2)(x4)0,2x4B=x|2x4,RB=x|x2或x4,ARB=x|0 x2或x4,故选C6 【答案】B【解析】解:+(a4)0有意义,解得2a4或a4故选:B7 【答案】D【解析】考点:平面的基本公理与推论8 【答案】D【解析】解:偶函数f(x)=2x4(x0),故它的图象关于y轴对称,且图象经过点(2,0)、(0,3),(2,0),故f(x2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x2)的图象经过点(0,0)、(2,3),(4,0),则由f(x2)0,可得 0 x4,故选:D【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题9 【答案】A【解析】解:sinC=2sinB,c=2b,a2b2=bc,cosA=A是三角形的内角A=30故选A【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题10【答案】C【解析】试题分析:由题意得,当时,当时,所以,结合不同段上函数的性质,可知选项C符合,故选C.考点:分段函数的解析式与图象.11【答案】A【解析】解:f(x)是R上的奇函数,且在(0,+)内是增函数,在(,0)内f(x)也是增函数,又f(3)=0,f(3)=0当x(,3)(0,3)时,f(x)0;当x(3,0)(3,+)时,f(x)0;(x2)f(x)0的解集是(3,0)(2,3)故选:A12【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y2=0的距离,即|AM|min=故选:D【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义二、填空题13【答案】 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=海里,则这时船与灯塔的距离为海里故答案为14【答案】 【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P=,根据条件概率公式,得:P2=,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键15【答案】【解析】考查函数,其余条件均不变,则:当x0时,f(x)=x+2x,单调递增,f(1)=1+210,由零点存在定理,可得f(x)在(1,0)有且只有一个零点;则由题意可得x0时,f(x)=axlnx有且只有一个零点,即有有且只有一个实根。令,当xe时,g(x)0,g(x)递减;当0 x0,g(x)递增。即有x=e处取得极大值,也为最大值,且为,如图g(x)的图象,当直线y=a(a0)与g(x)的图象只有一个交点时,则.回归原问题,则原问题中.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a)的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围16【答案】x|x2且x3 【解析】解:根据对数函数及分式有意义的条件可得解可得,x2且x3故答案为:x|x2且x317【答案】 【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AEBOAC,侧棱AA1底面ABC,三棱柱ABCA1B1C1是直棱柱由直棱柱的性质可得:BO侧面ACC1A1四边形BODE是矩形DE侧面ACC1A1DAE是AD与平面AA1C1C所成的角,为,DE=OBAD=在RtADE中,sin=故答案为:【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题18【答案】D 【解析】解:根据题意,质点运动的轨迹为:ABCADBACDA接着是BCADBACDA周期为9质点经过2015次运动,2015=2239+8,质点到达点D故答案为:D【点评】本题考查了函数的周期性,本题难度不大,属于基础题三、解答题19【答案】 【解析】()证明:对任意正整数n,an(,),且tanan+1cosan=1(nN*)故tan2an+1=1+tan2an,数列tan2an是等差数列,首项tan2a1=,以1为公差=数列tan2an的前n项和=+=()解:cosan0,tanan+10,tanan=,sina1sina2sinam=(tana1cosa1)(tana2cosa2)(tanamcosam)=(tana2cosa1)(tana3cosa2)(tanamcosam1)(tana1cosam)=(tana1cosam)=,由,得m=40【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题20【答案】【解析】21【答案】 【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,7),半径长r=5因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2xy+b=0所以圆心到直线l的距离为,因此,解得b=2,或b=12所以,所求直线l的方程为y=2x2,或y=2x12即2xy2=0,或2xy12=0【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用22【答案】 【解析】解:()由题意,因为sinB=,所以cosB=又cosADC=,所以sinADC=所以sinBAD=sin(ADCB)=()=()在ABD中,由正弦定理,得,解得BD=故BC=15,从而在ADC中,由余弦定理,得AC2=9+2252315()=,所以AC=【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题23【答案】【解析】解:(1)根据散点图可知,x与y是负相关(2)根据提供的数据,先求数据(1,y1),(2,y2),(3,y3),(4,y4),(5,y5)的回归直线方程,ycd,2.17,y38(2.17)1161.87.数据(i,yi)(i1,2,3,4,5)的回归直线方程为y2.1761.87,又ix,y关于x的回归方程为y2.17x261.87.(3)当y0时,x5.3.估计最多用5.3千克水24【答案】(1);(2).【解析】考点:正余弦定理的综合应用,二次方程,三角方程.【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理.当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.第 18 页,共 18 页
展开阅读全文