资源描述
专题三数列、推理与证明第1讲等差数列、等比数列(推荐时间:60分钟)一、填空题1已知数列an是公比为q的等比数列,且a1,a3,a2成等差数列,则公比q的值为_2已知等比数列an中,a4a610,则a1a72a3a7a3a9的值等于_3设an是公差为正数的等差数列,若a1a2a315,a1a2a380,则a11a12a13的值为_4(2020大纲全国改编)设Sn为等差数列an的前n项和,若a11,公差d2,Sk2Sk24,则k_.5(2020湖南)设Sn是等差数列an (nN*)的前n项和,且a11,a47,则S5_.6已知数列an的前n项和Sn满足log2(Sn1)n1,则数列an的通项公式是_7等比数列an的前n项和为Sn,已知S1,2S2,3S3成等差数列,则an的公比为_8(2020辽宁)若等比数列an满足anan116n,则公比为_9(2020江苏)函数yx2(x0)的图象在点(ak,a)处的切线与x轴的交点的横坐标为ak1,其中kN*,a116,则a1a3a5的值是_10设等差数列an的各项均为整数,其公差d0,a56,若a3,a5,am (m5)是公比为q (q0)的等比数列,则m的值为_11已知正项等比数列an,a12,又bnlog2an,且数列bn的前7项和T7最大,T7T6,且T7T8,则数列an的公比q的取值范围是_12在数列an中,若p (n1,nN*,p为常数),则称an为“等方差数列”,下列是对“等方差数列”的判断:若an是等方差数列,则是等差数列;(1)n是等方差数列;若an是等方差数列,则akn (kN*,k为常数)也是等方差数列其中真命题的序号为_(将所有真命题的序号填在横线上)二、解答题13已知数列an的首项a1a,anan11(nN*,n2)若bnan2(nN*)(1)问数列bn是否能构成等比数列?并说明理由(2)若已知a11,设数列anbn的前n项和为Sn,求Sn.14.(2020大纲全国)设等比数列an的前n项和为Sn,已知a26,6a1a330,求an和Sn.15已知数列an满足an2an12n1(n2),且a481.(1)求数列的前三项a1,a2,a3;(2)求证:数列为等差数列,并求an.答 案11或2.1003.1054.55.256an7.8.4921 1011112q2 1213解(1)b1a2,anbn2,所以bn2(bn12)1,bnbn1.所以,当a2时,数列bn能构成等比数列;当a2时,数列bn不能构成等比数列(2)当a1,得bn()n1,an2()n1,anbn()n12()n1,所以Sn2(1)4(1).14解设an的公比为q,由题设得解得或当a13,q2时,an32n1,Sn3(2n1);当a12,q3时,an23n1,Sn3n1.15(1)解an2an12n1,a42a3241.又a481,a333,同理:a213,a15.(2)证明由an2an12n1(n2),得1,1,是等差数列;的公差d1.(n1)1n1. an(n1)2n1.
展开阅读全文