(通用版)2022年高考数学二轮复习 第一部分 第二层级 重点增分 专题十 直线与圆讲义 理(普通生含解析)

上传人:xt****7 文档编号:108683391 上传时间:2022-06-15 格式:DOC 页数:15 大小:165KB
返回 下载 相关 举报
(通用版)2022年高考数学二轮复习 第一部分 第二层级 重点增分 专题十 直线与圆讲义 理(普通生含解析)_第1页
第1页 / 共15页
(通用版)2022年高考数学二轮复习 第一部分 第二层级 重点增分 专题十 直线与圆讲义 理(普通生含解析)_第2页
第2页 / 共15页
(通用版)2022年高考数学二轮复习 第一部分 第二层级 重点增分 专题十 直线与圆讲义 理(普通生含解析)_第3页
第3页 / 共15页
点击查看更多>>
资源描述
(通用版)2022年高考数学二轮复习 第一部分 第二层级 重点增分 专题十 直线与圆讲义 理(普通生,含解析)全国卷3年考情分析年份全国卷全国卷全国卷2018直线方程、圆的方程、点到直线的距离T62017圆的性质、点到直线的距离、双曲线的几何性质T15圆的弦长问题、双曲线的几何性质T9直线与圆的位置关系、点到直线的距离、椭圆的几何性质T10直线与圆的方程、直线与抛物线的位置关系T202016圆的方程、点到直线的距离T4点到直线的距离、弦长问题T16(1)圆的方程近几年成为高考全国课标卷命题的热点,需重点关注此类试题难度中等偏下,多以选择题或填空题形式考查(2)直线与圆的方程偶尔单独命题,单独命题时有一定的深度,有时也会出现在压轴题的位置,难度较大,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上 保分考点练后讲评1.已知直线l1:(k3)x(4k)y10与直线l2:2(k3)x2y30平行,则k的值是()A1或3B1或5C3或5 D1或2解析:选C当k4时,直线l1的斜率不存在,直线l2的斜率存在,所以两直线不平行;当k4时,两直线平行的一个必要条件是k3,解得k3或k5,但必须满足(截距不等)才是充要条件,经检验知满足这个条件2两直线垂直已知直线mx4y20与2x5yn0互相垂直,垂足为P(1,p),则mnp的值是()A24 B20C0 D4解析:选B直线mx4y20与2x5yn0互相垂直,1,m10.直线mx4y20,即5x2y10,将垂足(1,p)代入,得52p10,p2.把P(1,2)代入2x5yn0,得n12,mnp20,故选B.3.坐标原点(0,0)关于直线x2y20对称的点的坐标是()A. B.C. D.解析:选A直线x2y20的斜率k,设坐标原点(0,0)关于直线x2y20对称的点的坐标是(x0,y0),依题意可得解得即所求点的坐标是.4.已知直线l过直线l1:x2y30与直线l2:2x3y80的交点,且点P(0,4)到直线l的距离为2,则直线l的方程为_解析:由得所以直线l1与l2的交点为(1,2)显然直线x1不符合,即所求直线的斜率存在,设所求直线的方程为y2k(x1),即kxy2k0,因为P(0,4)到直线l的距离为2,所以2,所以k0或k.所以直线l的方程为y2或4x3y20.答案:y2或4x3y20解题方略1两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断2轴对称问题的两种类型及求解方法点关于直线的对称若两点P1(x1,y1)与P2(x2,y2)关于直线l:AxByC0对称,则线段P1P2的中点在对称轴l上,而且连接P1,P2的直线垂直于对称轴l.由方程组可得到点P1关于l对称的点P2的坐标(x2,y2)(其中B0,x1x2)直线关于直线的对称有两种情况,一是已知直线与对称轴相交;二是已知直线与对称轴平行一般转化为点关于直线的对称来解决 保分考点练后讲评大稳定1.若方程x2y2ax2ay2a2a10表示圆,则实数a的取值范围是()A(,2)B.C(2,0) D.解析:选D若方程表示圆,则a2(2a)24(2a2a1)0,化简得3a24a40,解得2a0),由题意知,解得a2,所以r 3,故圆C的标准方程为(x2)2y29.答案:(x2)2y29解题方略求圆的方程的2种方法几何法通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和方程代数法用待定系数法先设出圆的方程,再由条件求得各系数,从而求得圆的方程小创新1.已知圆M:x2y22xa0,若AB为圆M的任意一条直径,且6(其中O为坐标原点),则圆M的半径为()A. B.C. D2解析:选C圆M的标准方程为(x1)2y21a(a0)截直线xy0所得线段的长度是2,则圆M与圆N:(x1)2(y1)21的位置关系是()A内切 B相交C外切 D相离解析:选B圆M:x2y22ay0(a0)可化为x2(ya)2a2,由题意,M(0,a)到直线xy0的距离d,所以a22,解得a2.所以圆M:x2(y2)24,所以两圆的圆心距为,半径和为3,半径差为1,故两圆相交4(2018全国卷)直线xy20分别与x轴,y轴交于A,B两点,点P在圆(x2)2y22上,则ABP面积的取值范围是()A2,6 B4,8C,3 D2,3解析:选A设圆(x2)2y22的圆心为C,半径为r,点P到直线xy20的距离为d,则圆心C(2,0),r,所以圆心C到直线xy20的距离为2,可得dmax2r3,dmin2r.由已知条件可得|AB|2,所以ABP面积的最大值为|AB|dmax6,ABP面积的最小值为|AB|dmin2.综上,ABP面积的取值范围是2,65已知圆O:x2y24上到直线l:xya的距离等于1的点至少有2个,则实数a的取值范围为()A(3,3)B(,3)(3,)C(2,2)D3,3 解析:选A由圆的方程可知圆心为(0,0),半径为2.因为圆O上到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离dr121,即d0,y1y2,x1x2k(y1y2)2,因为,故M,又点M在圆C上,故4,解得k0.法二:由直线与圆相交于A,B两点,且点M在圆C上,得圆心C(0,0)到直线xky10的距离为半径的一半,为1,即d1,解得k0.二、填空题7已知直线l:xmy30与圆C:x2y24相切,则m_.解析:因为圆C:x2y24的圆心为(0,0),半径为2,直线l:xmy30与圆C:x2y24相切,所以2,解得m .答案:8过点C(3,4)作圆x2y25的两条切线,切点分别为A,B,则点C到直线AB的距离为_解析:以OC为直径的圆的方程为2(y2)22,AB为圆C与圆O:x2y25的公共弦,所以AB的方程为x2y25,化简得3x4y50,所以C到直线AB的距离d4.答案:49(2018贵阳适应性考试)已知直线l:ax3y120与圆M:x2y24y0相交于A,B两点,且AMB,则实数a_.解析:直线l的方程可变形为yax4,所以直线l过定点(0,4),且该点在圆M上圆的方程可变形为x2(y2)24,所以圆心为M(0,2),半径为2.如图,因为AMB,所以AMB是等边三角形,且边长为2,高为,即圆心M到直线l的距离为,所以,解得a.答案:三、解答题10已知圆(x1)2y225,直线axy50与圆相交于不同的两点A,B.(1)求实数a的取值范围;(2)若弦AB的垂直平分线l过点P(2,4),求实数a的值解:(1)把直线axy50代入圆的方程,消去y整理,得(a21)x22(5a1)x10,由于直线axy50交圆于A,B两点,故4(5a1)24(a21)0,即12a25a0,解得a或a0,b0),即bxayab0,由直线l与圆O相切,得,即,则|DE|2a2b22(a2b2)48,当且仅当ab2时取等号,此时直线l的方程为xy20.B组大题专攻补短练1已知点M(1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍(1)求曲线E的方程;(2)已知m0,设直线l1:xmy10交曲线E于A,C两点,直线l2:mxym0交曲线E于B,D两点当CD的斜率为1时,求直线CD的方程解:(1)设曲线E上任意一点的坐标为(x,y),由题意得 ,整理得x2y24x10,即(x2)2y23为所求(2)由题意知l1l2,且两条直线均恒过点N(1,0)设曲线E的圆心为E,则E(2,0),设线段CD的中点为P,连接EP,ED,NP,则直线EP:yx2.设直线CD:yxt,由解得点P,由圆的几何性质,知|NP|CD| ,而|NP|222,|ED|23,|EP|22,所以223,整理得t23t0,解得t0或t3,所以直线CD的方程为yx或yx3.2在平面直角坐标系xOy中,点A(0,3),直线l:y2x4,设圆C的半径为1,圆心在l上(1)若圆心C也在直线yx1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|2|MO|,求圆心C的横坐标a的取值范围解:(1)因为圆心在直线l:y2x4上,也在直线yx1上,所以解方程组得圆心C(3,2),又因为圆的半径为1,所以圆的方程为(x3)2(y2)21,又因为点A(0,3),显然过点A,圆C的切线的斜率存在,设所求的切线方程为ykx3,即kxy30,所以1,解得k0或k,所以所求切线方程为y3或yx3,即y30或3x4y120.(2)因为圆C的圆心在直线l:y2x4上,所以设圆心C为(a,2a4),又因为圆C的半径为1,则圆C的方程为(xa)2(y2a4)21.设M(x,y),又因为|MA|2|MO|,则有2,整理得x2(y1)24,其表示圆心为(0,1),半径为2的圆,设为圆D,所以点M既在圆C上,又在圆D上,即圆C与圆D有交点,所以21 21,解得0a,所以圆心C的横坐标a的取值范围为.3在直角坐标系xOy中,曲线yx2mx2与x轴交于A,B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现ACBC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值解:(1)不能出现ACBC的情况,理由如下:设A(x1,0),B(x2,0),则x1,x2满足x2mx20,所以x1x22.又C的坐标为(0,1),故AC的斜率与BC的斜率之积为,所以不能出现ACBC的情况(2)证明:由(1)知BC的中点坐标为,可得BC的中垂线方程为yx2.由(1)可得x1x2m,所以AB的中垂线方程为x.联立可得所以过A,B,C三点的圆的圆心坐标为,半径r.故圆在y轴上截得的弦长为23,即过A,B,C三点的圆在y轴上截得的弦长为定值4(2018广州高中综合测试)已知定点M(1,0)和N(2,0),动点P满足|PN|PM|.(1)求动点P的轨迹C的方程;(2)若A,B为(1)中轨迹C上两个不同的点,O为坐标原点设直线OA,OB,AB的斜率分别为k1,k2,k.当k1k23时,求k的取值范围解:(1)设动点P的坐标为(x,y),因为M(1,0),N(2,0),|PN|PM|,所以 .整理得,x2y22.所以动点P的轨迹C的方程为x2y22.(2)设点A(x1,y1),B(x2,y2),直线AB的方程为ykxb.由消去y,整理得(1k2)x22bkxb220.(*)由(2bk)24(1k2)(b22)0,得b222k2.由根与系数的关系,得x1x2,x1x2.由k1k23,得(kx1b)(kx2b)3x1x2,即(k23)x1x2bk(x1x2)b20.将代入,整理得b23k2.由得b23k20,解得k.由和,解得k.要使k1,k2,k有意义,则x10,x20,所以0不是方程(*)的根,所以b220,即k1且k1.由,得k的取值范围为,1)(1,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!