人教件版数学九上253《利用频率估计概率》课之一

上传人:dfg****19 文档编号:106762122 上传时间:2022-06-13 格式:PPT 页数:15 大小:428.50KB
返回 下载 相关 举报
人教件版数学九上253《利用频率估计概率》课之一_第1页
第1页 / 共15页
人教件版数学九上253《利用频率估计概率》课之一_第2页
第2页 / 共15页
人教件版数学九上253《利用频率估计概率》课之一_第3页
第3页 / 共15页
点击查看更多>>
资源描述
25.325.3利用频率估计概率利用频率估计概率 2、用列举法求、用列举法求概率有哪几种?概率有哪几种? nmAP(1)(1)实验的所有结果是有限个实验的所有结果是有限个(2)(2)各种结果的可能性相等各种结果的可能性相等. . 当当实验的所有结果实验的所有结果不是有限个不是有限个; ;或各种可能结或各种可能结果发生的果发生的可能性不相等可能性不相等时时. .又该如何求事件发生的又该如何求事件发生的概率呢概率呢? ?复习复习1、求概率条件是什么?用什么方法求?、求概率条件是什么?用什么方法求?抛掷次数(n)20484040120003000024000正面朝上数正面朝上数(m)1061204860191498412012频率(m/n)0.5180.5060.5010.49960.5005试验试验1:历史上曾有人作过抛掷硬币的大量重复实:历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示验,结果如下表所示抛掷次数n频率m/n0.512048404012000240003000072088实验结论:当抛硬币的次数很多时当抛硬币的次数很多时,出现下面的频率值是出现下面的频率值是稳定的稳定的,接近于常数接近于常数0.5,在它附近摆动在它附近摆动.试验2某批乒乓球质量检查结果表抽取球数n5010020050010002000优等品数m45921944709541992优等品频率m/n0.90.920.970.94 0.954 0.951试验3 某种油菜籽在相同条件下的发芽试验结果表每批粒数n251070130310700150020003000发芽的粒数m24960116282639133918062715发芽的频率m/n10.8 0.9 0.8570.8920.9100.9130.8930.9030.905 当抽查的球数很多时,抽到优等品的频率当抽查的球数很多时,抽到优等品的频率 接近于常数接近于常数0.95,在它附近摆动。,在它附近摆动。nm 很多很多常数常数 当试验的油菜籽的粒数很多时,油菜籽发芽的频率当试验的油菜籽的粒数很多时,油菜籽发芽的频率 接近接近于常数于常数0.9,在它附近摆动。,在它附近摆动。nm很多很多 常数常数 结结 论论归纳归纳 一般地一般地, ,在大量重复试验中在大量重复试验中, ,如果事件如果事件A A发生的发生的频率频率 稳定于某个常数稳定于某个常数p,p,那么事件那么事件A A发生的概率发生的概率P(A)= p P(A)= p m mn n通常我们用频率估计出来的概率要比频通常我们用频率估计出来的概率要比频率保留的数位要少。率保留的数位要少。某林业部门要考查某种幼树在一定条件下的移植成活率某林业部门要考查某种幼树在一定条件下的移植成活率, ,应应采用什么具体做法采用什么具体做法? ?观察在各次试验中得到的幼树成活的频率,谈谈观察在各次试验中得到的幼树成活的频率,谈谈你的看法你的看法估计移植成活率估计移植成活率移植总数(移植总数(n)成活数(成活数(m)108成活的频率成活的频率0.8( )nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897是实际问题中的一种概率是实际问题中的一种概率, ,可理解为成活的概率可理解为成活的概率. .估计移植成活率估计移植成活率由下表可以发现,幼树移植成活的频率在由下表可以发现,幼树移植成活的频率在左右摆动,左右摆动,并且随着移植棵数越来越大,这种规律愈加明显并且随着移植棵数越来越大,这种规律愈加明显. .所以估计幼树移植成活的概率为所以估计幼树移植成活的概率为0.90.9移植总数(移植总数(n)成活数(成活数(m)108成活的频率成活的频率0.8( )nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897由下表可以发现,幼树移植成活的频率在由下表可以发现,幼树移植成活的频率在左右摆动,左右摆动,并且随着移植棵数越来越大,这种规律愈加明显并且随着移植棵数越来越大,这种规律愈加明显. .所以估计幼树移植成活的概率为所以估计幼树移植成活的概率为0.90.9移植总数(移植总数(n)成活数(成活数(m)108成活的频率成活的频率0.8( )nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.8971.1.林业部门种植了该幼树林业部门种植了该幼树10001000棵棵, ,估计能成活估计能成活_棵棵. . 2. 2.我们学校需种植这样的树苗我们学校需种植这样的树苗500500棵来绿化校园棵来绿化校园, ,则至少则至少向林业部门购买约向林业部门购买约_棵棵. .900556估计移植成活率估计移植成活率共同练习共同练习51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率(柑橘损坏的频率( )损坏柑橘质量(损坏柑橘质量(m)/千克千克柑橘总质量(柑橘总质量(n)/千克千克nm完成下表完成下表, ,0.1010.0970.0970.1030.1010.0980.0990.103某水果公司以某水果公司以2 2元元/ /千克的成本新进了千克的成本新进了10 00010 000千克柑橘千克柑橘, ,如果公如果公司希望这些柑橘能够获得利润司希望这些柑橘能够获得利润5 0005 000元元, ,那么在出售柑橘那么在出售柑橘( (已去掉损已去掉损坏的柑橘坏的柑橘) )时时, ,每千克大约定价为多少元比较合适每千克大约定价为多少元比较合适? ? 为简单起见,我们能否直接把表中的为简单起见,我们能否直接把表中的500500千克柑橘对应的柑橘损坏的频率看作柑千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?橘损坏的概率?利用你得到的结论解答下列问题利用你得到的结论解答下列问题: :在要求精度不是很高的情况下,不妨用表中的最后一行数据中在要求精度不是很高的情况下,不妨用表中的最后一行数据中的频率近似地代替概率的频率近似地代替概率. .共同练习共同练习51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率(柑橘损坏的频率( )损坏柑橘质量(损坏柑橘质量(m)/千克千克柑橘总质量(柑橘总质量(n)/千克千克nm0.1010.0970.0970.1030.1010.0980.0990.103 为简单起见,我们能否直接把表中的为简单起见,我们能否直接把表中的500500千克柑橘对应的柑橘损坏的频率看作柑千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?橘损坏的概率?完成下表完成下表, ,利用你得到的结论解答下列问题利用你得到的结论解答下列问题: : 1. 1.一水塘里有鲤鱼、鲫鱼、鲢鱼共一水塘里有鲤鱼、鲫鱼、鲢鱼共1 0001 000尾,一渔尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%31%和和42%42%,则这个水塘里有鲤鱼,则这个水塘里有鲤鱼_尾尾, ,鲢鱼鲢鱼_尾尾. .310270知识应用知识应用 如图如图, ,长方形内有一不规则区域长方形内有一不规则区域, ,现在玩投掷游戏现在玩投掷游戏, ,如如果随机掷中长方形的果随机掷中长方形的300300次中,有次中,有100100次是落在不规则图形次是落在不规则图形内内. .【拓展【拓展】 你能设计一个利用频你能设计一个利用频率估计概率的实验方法?率估计概率的实验方法?(1)(1)你能估计出掷中不规则图形的概率吗?你能估计出掷中不规则图形的概率吗?(2)(2)若该长方形的面积为若该长方形的面积为150,150,试估计不规则图形的面积试估计不规则图形的面积. .升华提高升华提高了解了一种方法了解了一种方法-用多次试验频率去估计概率用多次试验频率去估计概率体会了一种思想:体会了一种思想: 用样本去估计总体用样本去估计总体用频率去估计概率用频率去估计概率弄清了一种关系弄清了一种关系-频率与概率的关系频率与概率的关系当当试验次数很多或试验时样本容量足够大试验次数很多或试验时样本容量足够大时时, ,一件事件发生的一件事件发生的频率频率与相应的与相应的概率概率会非常接近会非常接近. .此时此时, ,我们可以用一件事件发生的我们可以用一件事件发生的频频率率来估计这一事件发生的来估计这一事件发生的概率概率. . 再见
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!