minitab部分因子设计-响应面设计-参数设计

上传人:gbs****77 文档编号:9933298 上传时间:2020-04-09 格式:DOC 页数:17 大小:980KB
返回 下载 相关 举报
minitab部分因子设计-响应面设计-参数设计_第1页
第1页 / 共17页
minitab部分因子设计-响应面设计-参数设计_第2页
第2页 / 共17页
minitab部分因子设计-响应面设计-参数设计_第3页
第3页 / 共17页
点击查看更多>>
资源描述
北京信息科技大学经济管理学院 工程优化技术 课程结课报告 成绩 班级 工商 1002 学号 2010011713 姓名 魏坡 日期 2013 年 6 月 7 日 部分因子试验设计 1 实验设计背景 部分因子试验设计与全因子试验设计的不同之处在于大大减少了试验的次 数 具体表现在试验设计创建阶段的不一致 下面主要就部分因子试验设计的 创建进行讲述 2 因子选择 用自动刨床刨制工作台平面的工艺条件试验 在用刨床刨制工作台平面试验中 考察影响其工作台平面光洁度的因子 并求出使光洁度达到最高的工艺条件 3 实验方案 共考察6个因子 A因子 进刀速度 低水平1 2 高水平1 4 单位 mm 刀 B 因子 切屑角度 低水平 10 高水平 12 单位 度 C 因子 吃刀深度 低水平 0 6 高水平 0 8 单位 mm D 因子 刀后背角 低水平 70 高水平 76 单位 度 E 因子 刀前槽深度 低水平 1 4 高水平 1 6 单位 mm F 因子 润滑油进给量 低水平 6 高水平 8 单位 毫升 分钟 要求 连中心点在内 不超过 20 次试验 考察各因子主效应和 2 阶交互效应 AB AC CF DE 是否显著 由于试验次数的限制 我们在因子点上只能做试 验 16 次 另 4 次取中心点 这就是 的试验 通过查部分因子试验分辨624 度表可知 可达分辨度为 的设计 具体操作为 选择 统计 DOE 因子 创建因子设计 单击打开创建因子设计对话框 在 设计类型 中选择默 认 2 水平因子 默认生成元 在 因子数 中选定 6 单击 显示可用设计 就可以看到下图的界面 可以确认 用 16 次试验能 够达到分辨度为 的设计 单击 设计 选项 选定 1 4 部分实施 在每个区组的中心点数中设定为 4 其他的不进行设定 单击确定 单击 因子 选项 设定各个因子的名称 并设定高 低水平值 点击确 定 再点击确定后 就可以得到试验计划表 如下 与全因子设计不同的是 我们不能肯定这个试验计划表一定能满足要求 因为部分因子试验中一定会出现混杂 这些混杂如果破坏了试验要求 则必须 重新进行设计 从运行窗中可以看到下列结果 设计生成元 E ABC F BCD 别名结构 I ABCE ADEF BCDF A BCE DEF ABCDF B ACE CDF ABDEF C ABE BDF ACDEF D AEF BCF ABCDE E ABC ADF BCDEF F ADE BCD ABCEF AB CE ACDF BDEF AC BE ABDF CDEF AD EF ABCF BCDE AE BC DF ABCDEF AF DE ABCD BCEF BD CF ABEF ACDE BF CD ABDE ACEF ABD ACF BEF CDE ABF ACD BDE CEF 从此表得知 计算机自己选择的生成元是 E ABC F BCD 后面的别名结构 中列出了交互作用项的混杂情况 即每列中互为别名的因子有哪些 从上表可 以看出 主效应与三阶及四阶交互作用混杂 二阶交互作用与四阶交互作用混 杂 三阶交互作用与四阶交互作用混杂 关键是要检查一下题目所要求的2阶交 互作用情况 将3阶以上的交互作用忽略不计 混杂的情况有 AB CE AC BE AD EF AF DE AE BC DF BD CF BF CD 本例中所要求的4个2阶交 互作用是AB AC CF DE 显然可以看到 这四个2阶交互作用均没有混杂 因此 可以看到此试验计划是可行的 响应面设计的分析 1 实验设计背景 提高烧碱纯度问题 在烧碱生产过程中 经过因子的筛选 最后得知反应 炉内压力及温度是两个关键因子 在改进阶段进行全因子试验 因子A压力的低 水平和高水平分别取为50帕和60帕 因子B反应温度的低水平和高水平分别取为 260及320摄氏度 在中心点处也作了3次试验 试验结果在数据文件 DOE 烧碱 纯度 2 实验因子的选择 对于这批数据按全因子试验进行分析 具体操作为 选择 统计 DOE 因子 分析因子设计 打开分析因子设计对话框 首先将全部备选项列入 模型 删除在模型中包括中心点 在 图形 中的残差与变量下将压力和温度 选入进去 得到的结果如下 纯度 的效应和系数的估计 已编码单位 项 效应 系数 系数标准误 T P 常量 96 961 0 4150 233 63 0 000 压力 2 665 1 332 0 5490 2 43 0 094 温度 0 765 0 382 0 5490 0 70 0 536 压力 温度 0 035 0 018 0 5490 0 03 0 977 S 1 09803 PRESS 134 203 R Sq 68 01 R Sq 预测 0 00 R Sq 调整 36 01 对于 纯度 方差分析 已编码单位 来源 自由度 Seq SS Adj SS Adj MS F P 主效应 2 7 6874 7 68745 3 84372 3 19 0 181 2因子交互作用 1 0 0012 0 00123 0 00123 0 00 0 977 残差误差 3 3 6170 3 61701 1 20567 弯曲 1 3 5178 3 51781 3 51781 70 92 0 014 纯误差 2 0 0992 0 09920 0 04960 合计 6 11 3057 从上述表中可以看到 主效应和2因子交互作用对应的概率P值均大于0 1 说明模型的总效应不显著 而且弯曲对应的概率P值为0 014 拒绝原假设 认 为存在明显的弯曲趋势 R Sq和R Sq 预测 的值都比较小 说明了模型的总 效果不显著 605856545250 1 00 0 75 0 50 0 25 0 00 0 25 0 50 压 力 残差 残 差 与 压 力 响 应 为 纯 度 从残差与各变量的图也验证了存在严重的弯曲现象 这些都表明 对响应变量 单纯地拟合一阶线性方程已经不够了 需要再补充些 星号点 构成一个完整 的响应曲面设计 拟合一个含二阶项的方程就可能问题了 补充的4个星号点的 实验结果见数据表 DOE 烧碱纯度 响应2 下面对全部11个点构成的中心复合序贯设计进行分析 拟合一个完整的响 应曲面模型 分析如下 第一步 拟合选定模型 选择 统计 DOE 响应曲面 分析响应曲面设计 打开分析响应曲面 设计对话框 点击窗口 项 以后 可以看到模型中将全部备选项都列入了模 型 包括A 压力 B 温度 以及它们的平方项AA BB和交互作用项AB 打开 图形 窗口 选定 正规 四合一 以及残差与变量 并将压力和温度 都选入残差与变量中 打开 储存 窗口 选定 拟合值 残差 以及 设计矩阵 单击确定 320310300290280270260 1 00 0 75 0 50 0 25 0 00 0 25 0 50 温 度 残差 残 差 与 温 度 响 应 为 纯 度 得到的结果如下 纯度 的估计回归系数 项 系数 系数标准误 T P 常量 97 7804 0 10502 931 066 0 000 压力 1 8911 0 09114 20 750 0 000 温度 0 6053 0 09092 6 657 0 001 压力 压力 2 5822 0 15339 16 835 0 000 温度 温度 0 4615 0 15314 3 014 0 030 压力 温度 0 0351 0 18253 0 192 0 855 S 0 181900 PRESS 0 693667 R Sq 99 35 R Sq 预测 97 27 R Sq 调整 98 70 对于 纯度 的方差分析 来源 自由度 Seq SS Adj SS Adj MS F P 回归 5 25 2310 25 2310 5 04620 152 51 0 000 线性 2 15 7127 15 7127 7 85635 237 44 0 000 平方 2 9 5171 9 5171 4 75853 143 82 0 000 交互作用 1 0 0012 0 0012 0 00123 0 04 0 855 残差误差 5 0 1654 0 1654 0 03309 失拟 3 0 0662 0 0662 0 02208 0 45 0 747 纯误差 2 0 0992 0 0992 0 04960 合计 10 25 3964 结果解释 1 看方差分析表中的总效果 在本例中 回归项的P值为0 000 表明应 该拒绝原假设 认为本模型总的来说是有效的 看方差分析表中的失拟现象 本例中 失拟项对应的P值为0 747 明显大 于显著性水平0 05 接受原假设 认为本模型中不存在失拟现象 2 看拟合的总效果 本例中 R Sq与R Sq 调整 比较接近 认为模型 的拟合效果比较好 R Sq 预测 比较接近于R Sq值且这个值比较大 说明将 来用这个模型进行预测的效果比较可信 3 各效应的显著性 从表中可以看到 压力 温度以及它们的平方项对 应的概率值都小于显著性水平 说明这些效应都是显著的 而压力和温度的交 互效应项对应的概率值为0 855 显然大于显著性水平 认为该效应项是不显著 的 第二步 进行残差诊断 利用自动输出的残差图来进行残差诊断 0 300 150 00 0 15 0 30 99 90 50 10 1 残 差 百分 比 9897969594 0 2 0 1 0 0 0 1 0 2 拟 合 值 残差 0 20 10 0 0 1 0 2 4 3 2 1 0 残 差 频率 1110987654321 0 2 0 1 0 0 0 1 0 2 观 测 值 顺 序 残差 正 态 概 率 图 与 拟 合 值 直 方 图 与 顺 序 纯 度 残 差 图 6260585654525048 0 2 0 1 0 0 0 1 0 2 0 3 压 力 残差 残 差 与 压 力 响 应 为 纯 度 330320310300290280270260250240 0 2 0 1 0 0 0 1 0 2 0 3 温 度 残差 残 差 与 温 度 响 应 为 纯 度 从上述残差图中可以看出 残差的状况是正常的 第三步 判断模型是否需要改进 根据第一步的分析 我们得知压力和温度的交互作用项是不显著的 应该 予以剔除 因此需要重新拟合新的模型 使得新的模型中不包含交互作用项 得到的结果为 纯度 的估计回归系数 项 系数 系数标准误 T P 常量 97 7804 0 09622 1016 177 0 000 压力 1 8911 0 08350 22 647 0 000 温度 0 6053 0 08331 7 265 0 000 压力 压力 2 5822 0 14054 18 373 0 000 温度 温度 0 4615 0 14031 3 289 0 017 S 0 166665 PRESS 0 546550 R Sq 99 34 R Sq 预测 97 85 R Sq 调整 98 91 对于 纯度 的方差分析 来源 自由度 Seq SS Adj SS Adj MS F P 回归 4 25 2298 25 2298 6 30744 227 07 0 000 线性 2 15 7127 15 7127 7 85635 282 83 0 000 平方 2 9 5171 9 5171 4 75853 171 31 0 000 残差误差 6 0 1667 0 1667 0 02778 失拟 4 0 0675 0 0675 0 01687 0 34 0 836 纯误差 2 0 0992 0 0992 0 04960 合计 10 25 3964 纯度 的估计回归系数 使用未编码单位的数据 项 系数 常量 59 9731 压力 5 36834 温度 0 134611 压力 压力 0 0512244 温度 温度 2 56700E 04 结果解释 1 先看方差分析表中的总效果 回归项对应的P值为0 000 拒绝原假设 说明回归模型总的来说是有效的 看方差分析表中的失拟现象 可以看到失拟 对应的P值为0 836 大于0 05 接受原假设 即可以判定 本模型删去了一项 但没有造成失拟现象 2 看删减后的模型是否比原来的有所改进 全模型 变化 删减模型 R Sq 99 35 减小 99 34 R Sq 调整 98 70 增大 98 91 S 0 181900 减小 0 166665 R Sq 预测 97 27 增大 97 85 PRESS 0 693677 减小 0 546550 由于模型项缺少了一项 R Sq通常会有所降低 但关键要看调整的R Sq 调整 是否有所提高 s值是否有所降低 预测残差平方和PRESS是否有所 降低 R Sq 预测 是否有所提高 从表中来看 均符合上述要求 表明删除 了不显著的交互作用后 回归的效果更好了 此外 我们还可以得到最后确定的回归方程 2259 73 6840 1360 5140 567yABAB 从标准化残差以及删后残差的结果分析表中 可以看到这些值都小于2 因 此认为新的模型的残差没有发现任何不正常的情况 第四步 对选定的模型进行分析解释 通过前面得到的回归方程 运用数学方法我们可以得到使得纯度最大的A和 B分别取什么值 但是不能保证该最大值就一定落在试验范围之内 在求解前 先看一下等值线图和曲面图 具体实现 统计 DOE 响应曲面 等值线图 曲面图 从图中可以看到 在原试验范围内确实有个最大值 压 力 温度 60 057 555 052 550 0 330 320 310 300 290 280 270 260 250 DOE 响应曲面 分析响应曲面设计 入口 选定 响应 为纯度 在 预测 中 在自变量设置处 填写 52 4 262 2 则可以得到如下结果 使用 纯度 模型的新设计点数的预测响应 点 拟合值 拟合值标准误 95 置信区间 95 预测区间 1 98 3250 0 0859139 98 1148 98 5353 97 8662 98 7839 从结果中可以看到 预测结果的值与我们最优化的值是一样的 说明预测结果 是可信的 前一个置信区间表明的是回归方程上的点的置信区间 此值可以作 为改进的结果的预报写在总结报告中 后一个置信区间表明的是以上述回归方 程上的预测值的置信区间为基础 加上观测值固有的波动所给出的置信区间 这就是将来做一次验证试验时将要落入的范围 可供做验证试验时使用 水射流钻头喷嘴电火花线切割加工工艺 正交优化试验 1 实验设计背景 针对水射流钻头喷嘴制造过程 中存在 的问题 试验采用正交优化试验方法 通过极差分析和方差分析 研究了电火花线切割脉冲电流 脉冲宽度和脉冲间 隔等工艺参数对射流钻头喷嘴孔口表面粗糙度的影响 确定了因素的最佳水平 组合和因素的主次顺序及线切割 的最佳工艺参数 试验结果表明 当采用脉冲 电流 1 6A 脉冲宽度 8 s 和脉冲间隔 40 s 的参数组合时 喷嘴孔口表面质 量较高 其表面粗糙度小于 2 4 m 研究结果可为选择水射流喷嘴电火花线切 割加工工艺制定提供试验依据 2 因子选择 表 1 因素水平表 因素水平 A 脉冲电流 IN A B 脉冲宽度 T1 s C 脉冲间隔 T2 s 1 0 6 8 16 2 1 6 16 32 3 2 8 24 40 3 实验步骤 3 1 选择统计 DOE 因子 创建田口设计 3 2 在田口设计中选择3水平设计 因子数为4 3 3 在田口设计中选择设计 如下所示 在对话框中单击确定 3 4 在田口设计中选择因子 如下所示 点击确定 3 5 在田口设计中点击确定后 如下图所示 4 数据分析 5 分析过程 因素水平对表面粗糙度的影响趋势图 如图所示为各因素指标对水射流钻头喷嘴线切割加工表面粗糙度影响的变化趋 势图 从图可以看出 喷嘴的表面粗糙度随脉冲电流 脉冲宽度的增加而显著 增加 而随着随脉冲间隔的增大 喷嘴的表面粗糙度变化很小 因此 在实际 生产中 制定喷嘴的线切割工艺规范时 要着重考虑脉冲电流和脉冲宽度的选 取范围 以求效果达到最优
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!