资源描述
高中数学复习专题讲座:关于求圆锥曲线方程的方法高考要求 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法 重难点归纳 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤 定形指的是二次曲线的焦点位置与对称轴的位置 定式根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m0,n0) 定量由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小 典型题例示范讲解 例1某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A是双曲线的顶点,C、C是冷却塔上口直径的两个端点,B、B是下底直径的两个端点,已知AA=14 m,CC=18 m,BB=22 m,塔高20 m建立坐标系并写出该双曲线方程 命题意图本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力 知识依托待定系数法求曲线方程;点在曲线上,点的坐标适合方程;积分法求体积 错解分析 建立恰当的坐标系是解决本题的关键 技巧与方法本题是待定系数法求曲线方程 解如图,建立直角坐标系xOy,使AA在x轴上,AA的中点为坐标原点O,CC与BB平行于x轴 设双曲线方程为=1(a0,b0),则a=AA=7又设B(11,y1),C(9,x2)因为点B、C在双曲线上,所以有由题意,知y2y1=20,由以上三式得y1=12,y2=8,b=7故双曲线方程为=1 例2过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为的椭圆C相交于A、B两点,直线y=x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程 命题意图本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强 知识依托待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题 错解分析不能恰当地利用离心率设出方程是学生容易犯的错误恰当地利用好对称问题是解决好本题的关键 技巧与方法本题是典型的求圆锥曲线方程的问题,解法一,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式解法二,用韦达定理 解法一由e=,得,从而a2=2b2,c=b 设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上 则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12x22)+2(y12y22)=0,设AB中点为(x0,y0),则kAB=,又(x0,y0)在直线y=x上,y0=x0,于是=1,kAB=1,设l的方程为y=x+1 右焦点(b,0)关于l的对称点设为(x,y),由点(1,1b)在椭圆上,得1+2(1b)2=2b2,b2= 所求椭圆C的方程为 =1,l的方程为y=x+1 解法二由e=,从而a2=2b2,c=b 设椭圆C的方程为x2+2y2=2b2,l的方程为y=k(x1),将l的方程代入C的方程,得(1+2k2)x24k2x+2k22b2=0,则x1+x2=,y1+y2=k(x11)+k(x21)=k(x1+x2)2k= 直线ly=x过AB的中点(),则,解得k=0,或k=1 若k=0,则l的方程为y=0,焦点F(c,0)关于直线l的对称点就是F点本身,不能在椭圆C上,所以k=0舍去,从而k=1,直线l的方程为y=(x1),即y=x+1,以下同解法一 例3如图,已知P1OP2的面积为,P为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P的离心率为的双曲线方程 命题意图本题考查待定系数法求双曲线的方程以及综合运用所学知识分析问题、解决问题的能力 知识依托定比分点坐标公式;三角形的面积公式;以及点在曲线上,点的坐标适合方程 错解分析利用离心率恰当地找出双曲线的渐近线方程是本题的关键,正确地表示出P1OP2的面积是学生感到困难的 技巧与方法利用点P在曲线上和P1OP2的面积建立关于参数a、b的两个方程,从而求出a、b的值 解以O为原点,P1OP2的角平分线为x轴建立如图的直角坐标系 设双曲线方程为=1(a0,b0)由e2=,得 两渐近线OP1、OP2方程分别为y=x和y=x设点P1(x1, x1),P2(x2,x2)(x10,x20),则由点P分所成的比=2,得P点坐标为(),又点P在双曲线=1上,所以=1,即(x1+2x2)2(x12x2)2=9a2,整理得8x1x2=9a2 即x1x2= 由、得a2=4,b2=9故双曲线方程为=1 例4 双曲线=1(bN)的两个焦点F1、F2,P为双曲线上一点,|OP|5,|PF1|,|F1F2|,|PF2|成等比数列,则b2=_ 解析设F1(c,0)、F2(c,0)、P(x,y),则|PF1|2+|PF2|2=2(|PO|2+|F1O|2)2(52+c2),即|PF1|2+|PF2|250+2c2,又|PF1|2+|PF2|2=(|PF1|PF2|)2+2|PF1|PF2|,依双曲线定义,有|PF1|PF2|=4,依已知条件有|PF1|PF2|=|F1F2|2=4c216+8c250+2c2,c2,又c2=4+b2,b2,b2=1 答案1学生巩固练习 1 已知直线x+2y3=0与圆x2+y2+x6y+m=0相交于P、Q两点,O为坐标原点,若OPOQ,则m等于( )A 3B 3C 1D12 中心在原点,焦点在坐标为(0,5)的椭圆被直线3xy2=0截得的弦的中点的横坐标为,则椭圆方程为( )3 直线l的方程为y=x+3,在l上任取一点P,若过点P且以双曲线12x24y2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_ 4 已知圆过点P(4,2)、Q(1,3)两点,且在y轴上截得的线段长为4,则该圆的方程为_ 5 已知椭圆的中心在坐标原点,焦点在x轴上,它的一个焦点为F,M是椭圆上的任意点,|MF|的最大值和最小值的几何平均数为2,椭圆上存在着以y=x为轴的对称点M1和M2,且|M1M2|=,试求椭圆的方程 6 某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长 7已知圆C1的方程为(x2)2+(y1)2=,椭圆C2的方程为=1(ab0),C2的离心率为,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程 参考答案:1 解析将直线方程变为x=32y,代入圆的方程x2+y2+x6y+m=0,得(32y)2+y2+(32y)+m=0 整理得5y220y+12+m=0,设P(x1,y1)、Q(x2,y2)则y1y2=,y1+y2=4 又P、Q在直线x=32y上,x1x2=(32y1)(32y2)=4y1y26(y1+y2)+9故y1y2+x1x2=5y1y26(y1+y2)+9=m3=0,故m=3 答案A2 解析由题意,可设椭圆方程为 =1,且a2=50+b2,即方程为=1 将直线3xy2=0代入,整理成关于x的二次方程 由x1+x2=1可求得b2=25,a2=75 答案C3 解析所求椭圆的焦点为F1(1,0),F2(1,0),2a=|PF1|+|PF2| 欲使2a最小,只需在直线l上找一点P 使|PF1|+|PF2|最小,利用对称性可解答案 =14 解析设所求圆的方程为(xa)2+(yb)2=r2则有 由此可写所求圆的方程 答案x2+y22x12=0或x2+y210x8y+4=05 解|MF|max=a+c,|MF|min=ac,则(a+c)(ac)=a2c2=b2,b2=4,设椭圆方程为设过M1和M2的直线方程为y=x+m将代入得 (4+a2)x22a2mx+a2m24a2=0设M1(x1,y1)、M2(x2,y2),M1M2的中点为(x0,y0),则x0= (x1+x2)=,y0=x0+m= 代入y=x,得,由于a24,m=0,由知x1+x2=0,x1x2=,又|M1M2|=,代入x1+x2,x1x2可解a2=5,故所求椭圆方程为 =1 6 解以拱顶为原点,水平线为x轴,建立坐标系,如图,由题意知,|AB|=20,|OM|=4,A、B坐标分别为(10,4)、(10,4)设抛物线方程为x2=2py,将A点坐标代入,得100=2p(4),解得p=12 5,于是抛物线方程为x2=25y 由题意知E点坐标为(2,4),E点横坐标也为2,将2代入得y=016,从而|EE|=(0 16)(4)=3 84 故最长支柱长应为384米 7解由e=,可设椭圆方程为=1,又设A(x1,y1)、B(x2,y2),则x1+x2=4,y1+y2=2,又=1,两式相减,得=0,即(x1+x2)(x1x2)+2(y1+y2)(y1y2)=0 化简得=1,故直线AB的方程为y=x+3,代入椭圆方程得3x212x+182b2=0有=24b2720,又|AB|=,得,解得b2=8 故所求椭圆方程为=1 课前后备注
展开阅读全文