2017-2018学年高中数学 第六章 推理与证明 6.3 数学归纳法(1)当堂检测 湘教版选修2-2.doc

上传人:tia****nde 文档编号:6229517 上传时间:2020-02-20 格式:DOC 页数:2 大小:46KB
返回 下载 相关 举报
2017-2018学年高中数学 第六章 推理与证明 6.3 数学归纳法(1)当堂检测 湘教版选修2-2.doc_第1页
第1页 / 共2页
2017-2018学年高中数学 第六章 推理与证明 6.3 数学归纳法(1)当堂检测 湘教版选修2-2.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
6.3数学归纳法(一)1若命题A(n)(nN*)在nk(kN*)时命题成立,则有nk1时命题成立现知命题对nn0(n0N*)时命题成立,则有()A命题对所有正整数都成立B命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D以上说法都不正确答案C解析由已知得nn0(n0N*)时命题成立,则有nn01时命题成立;在nn01时命题成立的前提下,又可推得n(n01)1时命题也成立,依此类推,可知选C.2用数学归纳法证明“1aa2a2n1(a1)”在验证n1时,左端计算所得项为()A1a B1aa2C1aa2a3 D1aa2a3a4答案C解析将n1代入a2n1得a3,故选C.3用数学归纳法证明12222n12n1(nN*)的过程如下:(1)当n1时,左边1,右边2111,等式成立(2)假设当nk(kN*)时等式成立,即12222k12k1,则当nk1时,12222k12k2k11.所以当nk1时等式也成立由此可知对于任何nN*,等式都成立上述证明的错误是_答案未用归纳假设解析本题在由nk成立,证nk1成立时,应用了等比数列的求和公式,而未用上假设条件,这与数学归纳法的要求不符4当nN*时,Sn1,Tn,(1)求S1,S2,T1,T2;(2)猜想Sn与Tn的关系,并用数学归纳法证明解(1)当nN*时,Sn1,Tn.S11,S21,T1,T2.(2)猜想SnTn(nN*),即1(nN*)下面用数学归纳法证明:当n1时,已证S1T1,假设nk时,SkTk(k1,kN*),即1,则Sk1SkTkTk1.由,可知,对任意nN*,SnTn都成立在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1;(2)递推是关键:正确分析由nk到nk1时式子项数的变化是应用数学归纳法成功证明问题的保障;(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!