2019年高考数学 考点分析与突破性讲练 专题39 二项分布与正态分布 理.doc

上传人:max****ui 文档编号:6179204 上传时间:2020-02-18 格式:DOC 页数:9 大小:83KB
返回 下载 相关 举报
2019年高考数学 考点分析与突破性讲练 专题39 二项分布与正态分布 理.doc_第1页
第1页 / 共9页
2019年高考数学 考点分析与突破性讲练 专题39 二项分布与正态分布 理.doc_第2页
第2页 / 共9页
2019年高考数学 考点分析与突破性讲练 专题39 二项分布与正态分布 理.doc_第3页
第3页 / 共9页
点击查看更多>>
资源描述
专题39 二项分布与正态分布一、考纲要求:1.了解条件概率的概念,了解两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布,并能解决一些简单问题.3.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义二、概念掌握及解题上的注意点:1.独立重复试验的实质及应用,独立重复试验的实质是相互独立事件的特例,应用独立重复试验公式可以简化求概率的过程.2.判断某概率模型是否服从二项分布Pn(Xk)Cpk(1p)nk的三个条件(1)在一次试验中某事件A发生的概率是同一个常数p.(2)n次试验不仅是在完全相同的情况下进行的重复试验,而且每次试验的结果是相互独立的.(3)该公式表示n次试验中事件A恰好发生了k次的概率.3.解决有关正态分布的求概率问题的关键是充分利用正态曲线的对称性及曲线与x轴之间的面积为1,把待求区间内的概率向已知区间内的概率转化.解题时要充分结合图形进行分析、求解,要注意数形结合思想及化归思想的运用.(1)应熟记P(X),P(2X2),P(3X3)的值;(2)常用的结论有:正态曲线关于直线x对称,从而在关于x对称的区间上概率相等.P(Xa)1P(Xa),P(Xa)P(Xa).三、高考考题题例分析:例1.(2018全国卷I)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验设每件产品为不合格品的概率都为p(0p1),且各件产品是否为不合格品相互独立(1)记20件产品中恰有2件不合格品的概率为f(p),求f (p)的最大值点p0(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;()以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案】见解析(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知YB(180,0.1),X=202+25Y,即X=40+25Y,E(X)=E(40+25Y)=40+25E(Y)=40+251800.1=490(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,E(X)=490400,应该对余下的产品进行检验例 2.(2018全国卷III)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)P(X=6),则p=()A0.7B0.6C0.4D0.3【答案】B【解析】:某群体中的每位成员使用移动支付的概率都为p,看做是独立重复事件,满足XB(10,p),P(x=4)P(X=6),可得,可得12p0即p因为DX=2.4,可得10p(1p)=2.4,解得p=0.6或p=0.4(舍去)故选:B 5.盒中装有10个乒乓球,其中6个新球,4个旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也摸出新球的概率为()ABCD【答案】B6在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若XN(,2),则P(X)0.682 6,P(2X2)0.954 4.A2 386B2 718C3 413D4 772【答案】C【解析】:由曲线C为正态分布N(0,1)的密度曲线可知题图中阴影部分的面积为P(0X1)0.682 60.341 3,又题图中正方形面积为1,故它们的比值为0.341 3,故落入阴影部分的点的个数的估计值为0.341 310 0003 413.故选C7两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()ABCD【答案】B8.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为() ABCD【答案】C【解析】:设“开关第一次闭合后出现红灯”为事件A,“第二次闭合后出现红灯”为事件B,则由题意可得P(A),P(AB),则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P(B|A).故选C9设随机变量XB(2,p),YB(4,p),若P(X1),则P(Y2)的值为() ABCD【答案】B【解析】:因为随机变量XB(2,p),YB(4,p),又P(X1)1P(X0)1(1p)2,解得p,所以YB,则P(Y2)1P(Y0)P(Y1).10设随机变量X服从二项分布XB,则函数f(x)x24xX存在零点的概率是()ABCD【答案】C11.已知随机变量XN(0,2),若P(|X|2)的值为()ABC1aD【答案】A【解析】:根据正态分布可知P(|X|2)1,故P(X2),故选A12.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为() (参考数据:若随机变量服从正态分布N(,2),则P()68.26%,P(22)95.44%,P(33)99.74%.A4.56%B13.59%C27.18%D31.74%【答案】B【解析】:由正态分布的概率公式知P(33)0.682 6,P(66)0.954 4,故P(36)0.135 913.59%,故选B二、填空题13设随机变量N(,2),且P(1)0.2,则P(11)_.【答案】0.3【解析】:由P(1)0.2得P(1)0.5,所以P(11)0.50.20.3.14投掷一枚图钉,设钉尖向上的概率为p,连续掷一枚图钉3次,若出现2次钉尖向上的概率小于3次钉尖向上的概率,则p的取值范围为_【答案】【解析】:设P(Bk)(k0,1,2,3)表示“连续投掷一枚图钉,出现k次钉尖向上”的概率,由题意得P(B2)P(B3),即Cp2(1p)Cp3.3p2(1p)p3.由于0p1,p1.15将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)_.【答案】16事件A,B,C相互独立,如果P(AB),P(C),P(AB),则P(B)_,P(B)_.【答案】【解析】:由题意可得解得P(A),P(B),P(B)P()P(B).三、解答题17某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖抽奖规则如下:1抽奖方案有以下两种:方案a:从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b:从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中抽奖条件:顾客购买商品的金额满100元,可根据方案a抽奖一次;满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a抽奖两次或方案b抽奖一次或方案a、b各抽奖一次)已知顾客A在该商场购买商品的金额为350元(1)若顾客A只选择方案a进行抽奖,求其所获奖金的期望;(2)要使所获奖金的期望值最大,顾客A应如何抽奖? 【答案】(1) 9元;(2)见解析(2)按方案b抽奖一次,获得奖金的概率P1.若顾客A按方案a抽奖两次,按方案b抽奖一次,则由方案a中奖的次数服从二项分布B1,由方案b中奖的次数服从二项分布B2,设所得奖金为w2元,则Ew223011510.5.若顾客A按方案b抽奖两次,则中奖的次数服从二项分布B3.设所得奖金为w3元,则Ew32159.结合(1)可知,Ew1Ew3Ew2. 甲、乙、丙三人所付的租车费用之和的分布列为22.533.54P
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!