材料力动载荷ppt课件

上传人:钟*** 文档编号:5891722 上传时间:2020-02-10 格式:PPT 页数:59 大小:3.46MB
返回 下载 相关 举报
材料力动载荷ppt课件_第1页
第1页 / 共59页
材料力动载荷ppt课件_第2页
第2页 / 共59页
材料力动载荷ppt课件_第3页
第3页 / 共59页
点击查看更多>>
资源描述
1动载荷概念和工程实例 2惯性力问题 3构件受冲击时的应力及强度计算 4提高构件抵抗冲击能力的措施 第十二章动载荷 5构件的动力强度和冲击韧度 1 第一节动载荷概念和工程实例 一 静荷载的概念 载荷不随时间变化 或变化极其平稳缓慢 且使构件各部件加速度保持为零 或可忽略不计 此类载荷为静载荷 例 起重机以等速度吊起重物 重物对吊索的作用为静载 二 动载荷的概念 载荷随时间急剧变化且使构件的速度有显著变化 系统产生惯性力 此类载荷为动载荷 例 起重机以加速度吊起重物 重物对吊索的作用为动荷载作用 2 例如 旋转的飞轮突然刹车 轴受动荷载作用 例如 打桩 气锤的锤杆工作时均为动荷载作用 3 上海世博会场馆建设中心的锤击打桩 二零零七年十一月十四日中午十一点左右无锡某工地升降机从百米高空直接坠地 升降机内十七人 六人死亡 十一人重伤 4 5 6 7 8 9 10 1 构件作等加速直线运动和等速转动时的动应力计算 2 构件在受冲击和作强迫振动时的动应力计算 3 构件在交变应力作用下的疲劳破坏和疲劳强度计算 实验表明 在静载荷下服从虎克定律的材料 只要应力不超过比例极限 在动载荷下虎克定律仍成立且E静 E动 三 动响应 四 动载荷问题的分类 构件在动载荷作用下产生的各种响应 如应力 应变 位移等 称为动响应 11 第二节惯性力问题 一 匀加速直线运动构件的动应力计算 如图所示一起重机绳索以等加速度a提升一等截面直杆 直杆单位体积的重量 比重 重度 为 横截面面积为A 杆长为L 不计绳索的重量 求 杆内任意横截面的动应力 最大动应力 解 1 动轴力的确定 2 动应力的计算 12 最大动应力 a 0时 Kd 动荷系数 下标st 受静荷载作用 下标d 受动荷载作用 13 3 强度计算 14 例 试确定图所示起重机吊索所需的横截面面积A 已知提升物体的重量P 40kN 上升时的最大加速度 5m s2 绳索的许用拉应力 80MPa 设绳索的质量相对于物体的质量来说很小 可以忽略不计 解一 惯性力 这是个匀加速直线运动问题 因为加速度与运动方向一致 所以惯性力的方向向下 二 动荷系数 15 三 计算物体静止时 绳索所需的横截面积 由强度条件得 四 计算绳索所需要的横截面积 Ad KdAst 1 51 0 5 10 3 0 755 10 3 755mm2 16 例长度l 12m的16号工字钢 用横截面面积为A 108mm2的钢索起吊 如图a所示 并以等加速度a 10m s2上升 若只考虑工字钢的重量而不计吊索自重 试求吊索的动应力 以及工字钢在危险点的动应力 d max 解 将集度为qd A a的惯性力加在工字钢上 使工字钢上的起吊力与其重量和惯性力假想地组成平衡力系 见图b 于是 工字钢上总的均布力集度为 若工字钢单位长度的重量记为qst 则惯性力集度为 17 由对称关系可知 两吊索的轴力相等 其值可由平衡方程求得 故得吊索的动应力为 18 由型钢表查得qst 20 5kg m 20 5N m g及已知数据代入上式 即得 19 同理 工字钢危险截面上危险点处的动应力 由工字钢的弯矩图 图c 可知 Mmax 6qN m 并由型钢表查得Wz 21 2 10 6m3以及已知数据代入上式 得 20 二 构件作等速转动时的动应力 截面为A的薄壁圆环平均直径为D 以等角速度 绕垂直于环平面且过圆心的平面转动 圆环的比重为 求圆环横截面的动应力 解 一 求薄壁圆环内动内力 21 二 动应力的计算 22 例重为G的球装在长L的转臂端部 以等角速度在光滑水平面上绕O点旋转 已知许用强度 求转臂的截面面积 不计转臂自重 强度条件 解 受力分析如图 转臂的内力 23 解 1 计算杆内最大应力 a 离A端为x处取一微段 该微段的惯性力为 例一根杆以等角速度绕铅直轴在水平面内转动 已知杆长l 杆的横截面面积为A 重量为W 1 计算杆内最大应力 2 计算杆件的伸长 dx段的质量 微段处的法向加速度 24 b 取脱离体图 x处的内力为 轴力是按抛物线规律变化 c 绘内力图 确定内力最大的截面 并计算最大应力 时 该截面上的轴力最大 25 2 计算杆件的伸长 最大应力为 dx段的伸长可表示为 杆件的总伸长为 26 例 直径d 100mm的钢轴上装有转动惯量J 0 5N m s2的飞轮 如图示 轴的转速 200rpm G 80GPa 制动器与飞轮的距离l 1m 试求 当突然制动时 轴内最大切应力 解 制动前瞬时 系统的机械能 制动后瞬时 系统的机械能 由机械能守恒 得 轴内最大切应力为 27 例圆轴AB上作用有两个偏心载荷P 假定偏心载荷的质量集中于轴的对称面 并作用在跨长的三等分处设轴以等角速度 旋转 求 1 试绘轴的内力图 2 若CD EF杆材料的容许应力 为已知 截面积为A 试根据杆件的强度条件确定所容许的最大角速度 max 二 绘AB轴的受力图和内力图 解一 确定偏心重物惯性力和约束反力 28 三 计算 max 当CD EF两杆位于铅直平面内时 CD杆中有最大轴力 由强度条件 得 29 第三节构件受冲击荷载作用时的动应力 一 冲击 一个运动的物体 冲击物 以一定的速度 撞击另一个静止的物体 被冲击构件 静止的物体在瞬间使运动物体停止运动 这种现象叫做冲击 二 冲击问题的分析方法 能量法 假设 1 被冲击构件在冲击荷载的作用下服从虎克定律 2 不考虑被冲击构件内应力波的传播 3 冲击过程只有动能 势能 变形能的转换 无其它能量损失 4 冲击物为刚体 被冲击构件的质量忽略不计 30 1 自由落体冲击 如图所示 L A E Q h均为已知量 求 杆所受的冲击应力 解 1 冲击物的机械能 2 被冲击物的动应变能 3 能量守恒 三 冲击问题的简便计算方法 Dd为被冲击物的最大变形量 Fd为冲击载荷 31 4 动应力 动变形 32 例 图示矩形截面梁 抗弯刚度为EI 一重为F的重物从距梁顶面h处自由落下 冲击到梁的跨中截面上 求 梁受冲击时的最大应力和最大挠度 解 1 动荷系数 3 最大挠度 33 若A B支座换成刚度为C的弹簧 最大挠度 34 例已知 d1 0 3m l 6m P 5kN E1 10GPa 求两种情况的动应力 1 H 1m自由下落 2 H 1m 橡皮垫d2 0 15m h 20mm E2 8MPa 解 1 H 1m自由下落 0 0425mm 35 2 加橡皮垫d2 0 15m h 20mm E2 8MPa 解得Kd 52 3 36 例已知 P 2 88kN H 6cm 梁 E 100GPa I 100cm4 l 1m 柱 E1 72GPa I1 6 25cm4 A1 1cm2 a 1m P 62 8 nst 3 cr 373 2 15 试校核柱的稳定性 解 1 求柱的动载荷 37 2 柱的稳定性校核 柱是稳定的 38 例结构如图所示 已知 a 2m 重物P若从高度H 0 1m处自由落下冲击AB梁的跨中时 试求A截面的转角和C截面的挠度 解 1 静位移计算 当重物P以静载方式作用梁上时 引起AB梁的刚性转动为 AB梁的分别为 39 2 动荷系数 3 AB梁冲击时的挠度和转角 40 例 刚度为EI的梁受重为Q的重物从高度H处自由下落冲击 现将刚度的弹簧放置成图 a b 所示 试求 两种情况的最大正应力之比 最大位移之比 解 一 图a为超静定问题 a 先求在静荷载作用下B处的反力R 由变形协调方程得 解出 b 动荷系数和最大静应力 B点静位移为 动荷系数为 最大静应力为 41 B点的静位移为 动荷系数为 最大静应力为 二 图b的动荷系数和最大静应力 三 最大正应力之比和最大动位移之比 42 水平冲击 当研究的冲击物以一定的速度v从水平方向冲击结构构件 冲击物在冲击过程中付出的不是位能 而只是动能 式中 m为冲击物的质量 P为冲击物的重量 被冲击构件的弹性变形能 根据可以得到 43 动荷系数为 解锝 式中 冲击点沿冲击方向的静位移 44 例 1 重P 2kN的重物以的速度v m s水平冲击在长度为l 2m的杆端 见图a 2 如将刚度k 100kN m的弹簧装在杆端 见图b 同样受到上述的水平冲击 3 重物水平冲击在杆的中部 见图c 试求三种情况下 杆内最大正应力 解1 图a所示杆内的最大正应力最大静应力 冲击点静位移 动载系数 最大动应力 45 2 图b所示杆内的最大正应力 最大静应力 冲击点静位移 动载系数 最大动应力 46 3 图c所示杆内的最大正应力 最大静应力 冲击点静位移 动载系数 最大动应力 47 例 试校核如图所示的梁在承受水平冲击载荷作用时的强度 已知 冲击物的重量P 500kN 冲向梁时的速度v 0 35m s 冲击载荷作用在梁的中点处 梁的抗弯截面模量W 10 10 3m3 截面对中性轴的惯性矩I 5 10 3m4 弹性模量E 200GPa 许用应力 160MPa 解 1 这是一个水平冲击问题 当重物P以静载方式从水平方向作用在梁的跨中时 跨中截面的水平静位移为 2 动荷系数的计算 48 3 求最大弯矩 4 强度校核 因为MPa 所以此梁的强度是足够的 49 3 起吊重物时的冲击 起重吊索下端挂一重量为P的物体以等速v下降 当吊索悬挂长度为l时 起重机突然刹车 重物的速度由v突变为零 因此 吊索受到冲击作用 位能为 变形能为 变形能为 50 根据冲击前和冲击后的能量守恒可知 引进关系式 经整理得 解得 动载系数 51 例 如已知 P 25kN v 1m s l 20m A 4 14cm2 E 170GPa 试求钢索受到的冲击荷载和动应力 动载系数 解1 钢索受到的冲击荷载 A点静位移 冲击荷载 2 动应力 52 工程上常利用冲击进行锻造 冲压 打桩以及粉碎等 这时就需要尽量降低冲击应力 以提高构件抗冲击的能力 冲击应力的大小取决于Kd的值 静位移Dst越大 动荷系数Kd越小 因为静位移Dst增大 表示构件柔软 因而能更多地吸收冲击时的能量 从而降低冲击载荷和冲击应力 提高构件抗冲击的能力 第四节提高构件抵抗冲击能力的措施 53 增大静位移Dst的具体措施如 以上这些弹性元件不仅起了缓冲作用 而且能吸收一部分冲击动能 从而明显降低冲击动应力 另外 把刚性支座改为弹性支座能提高系统的静位移值 不失为一种提高构件的抗冲击能力的良好措施 值得注意的是 在提高静位移 减小Kd的同时 应避免提高静应力 在汽车车粱与轮轴之间安装叠板弹簧 火车车窗玻璃与窗框之间 机器零件之间装有橡皮垫圈 以大块玻璃为墙的新型建筑物 把玻璃嵌在弹性约束之中等等 54 在某些情况下 改变受冲击杆件的尺寸 也可以收到增加静位移以降低动应力的效果 以图所示的两杆为例 这两种情况的动载系数都为 它们的静位移分别是 由计算可知 55 例如在图中 杆为变截面杆 杆为等截面杆 因为 所以 杆的体积比 杆的体积大 但 杆的动应力不仅不比 杆的动应力小 而且还要大 这是因为静位移 动载系数 而静应力 所以动应力 而且 杆中间部分的长度s越小 则 杆的静位移就越小 动载系数就越大 由此可知 要尽可能地避免把受冲击的构件设计成变截面杆 56 第五节材料的动力强度和冲击韧度 由于冲击时材料变脆变硬 ss和sb随冲击速度而变化 因此工程上不用ss和sb 而用冲击韧度 ductility 来衡量材料的抗冲击能力 工程上对各种材料抗冲击能力的衡量 是以冲断具有切糟的标准试件所需要的能量为标志的 若冲断标准试件所需要的能量为W 试件在切糟处的最小横截面面积为A 用W除以A得 称为冲击韧度 57 冲击韧度是在冲击试验机上测定的 通常做的是冲击弯曲试验 冲击韧度的单位为焦耳 毫米2 是材料的性能指标之一越大表示材料抗冲击能力越强 一般说来 塑性越好的材料越高 抗冲击能力越强 脆性材料则较弱 一般不适宜作受冲构件 冲击韧度的测定一般是在室温下进行的 但试验结果表明 冲击韧度的数值随温度的降低而减小 材料变脆 如低碳钢 在低于某一温度后 其冲击韧度的数值会骤然下降 材料在低温下变脆的这种现象称为冷脆 使冲击韧度值骤然下降的温度称为临界温度 58 59
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!