备战2019高考数学大二轮复习 专题六 直线、圆、圆锥曲线 6.1 直线与圆课件 理.ppt

上传人:xt****7 文档编号:5809808 上传时间:2020-02-08 格式:PPT 页数:27 大小:886.50KB
返回 下载 相关 举报
备战2019高考数学大二轮复习 专题六 直线、圆、圆锥曲线 6.1 直线与圆课件 理.ppt_第1页
第1页 / 共27页
备战2019高考数学大二轮复习 专题六 直线、圆、圆锥曲线 6.1 直线与圆课件 理.ppt_第2页
第2页 / 共27页
备战2019高考数学大二轮复习 专题六 直线、圆、圆锥曲线 6.1 直线与圆课件 理.ppt_第3页
第3页 / 共27页
点击查看更多>>
资源描述
专题六直线 圆 圆锥曲线 6 1直线与圆 命题热点一 命题热点二 命题热点三 命题热点四 直线方程的应用 思考 在利用已知条件设直线方程时 应注意些什么 求直线方程的基本方法是什么 例1 a 2 是 直线ax y 2 0与直线2x a 1 y 4 0平行 的 A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件 答案 解析 命题热点一 命题热点二 命题热点三 命题热点四 题后反思1 在用直线的截距式方程解题时 要注意防止由于 零截距 而造成丢解的情况 2 在用直线的点斜式 斜截式方程解题时 要注意检验斜率不存在的情况 防止丢解 3 求直线方程的主要方法是待定系数法 在使用待定系数法求直线方程时 要注意方程的选择 分类讨论思想的应用 对点训练1已知P1 a1 b1 与P2 a2 b2 是直线y kx 1 k为常数 上两个不同的点 则关于x和y的方程组的解的情况是 A 无论k P1 P2如何 总是无解B 无论k P1 P2如何 总有唯一解C 存在k P1 P2 使之恰有两解D 存在k P1 P2 使之有无穷多解 命题热点一 命题热点二 命题热点三 命题热点四 答案 解析 命题热点一 命题热点二 命题热点三 命题热点四 圆的方程及其应用 思考 圆的方程有几种不同形式 求圆的方程的基本方法有哪些 例2在平面直角坐标系xOy中 以点 1 0 为圆心且与直线mx y 2m 1 0 m R 相切的所有圆中 半径最大的圆的标准方程为 x 1 2 y2 2 解析 方法一 设A 1 0 由mx y 2m 1 0 得m x 2 y 1 0 则直线过定点P 2 1 即该方程表示所有过定点P的直线系方程 当直线与AP垂直时 所求圆的半径最大 故所求圆的标准方程为 x 1 2 y2 2 命题热点一 命题热点二 命题热点三 命题热点四 命题热点一 命题热点二 命题热点三 命题热点四 题后反思1 圆的三种方程 1 圆的标准方程 x a 2 y b 2 r2 2 圆的一般方程 x2 y2 Dx Ey F 0 D2 E2 4F 0 3 圆的直径式方程 x x1 x x2 y y1 y y2 0 圆的直径的两端点是A x1 y1 B x2 y2 2 求圆的方程一般有两类方法 1 几何法 通过圆的性质 直线与圆 圆与圆的位置关系 求得圆的基本量和方程 2 代数法 即用待定系数法先设出圆的方程 再由条件求得各系数 对点训练2设点M x0 1 若在圆O x2 y2 1上存在点N 使得 OMN 45 则x0的取值范围是 命题热点一 命题热点二 命题热点三 命题热点四 答案 解析 命题热点一 命题热点二 命题热点三 命题热点四 直线与圆 圆与圆的位置关系 思考 如何判断直线与圆 圆与圆的位置关系 例3 1 平行于直线2x y 1 0且与圆x2 y2 5相切的直线的方程是 答案 解析 命题热点一 命题热点二 命题热点三 命题热点四 答案 解析 2 设A 1 0 B 0 1 直线l y ax 圆C x a 2 y2 1 若圆C既与线段AB有公共点 又与直线l有公共点 则实数a的取值范围是 命题热点一 命题热点二 命题热点三 命题热点四 题后反思1 判定直线与圆的位置关系的两种方法 1 代数方法 判断直线与圆方程联立所得方程组的解的情况 0 相交 r 相离 d r 相切 判定圆与圆的位置关系与判定直线与圆的位置关系类似 2 讨论直线与圆及圆与圆的位置关系时 要注意数形结合 充分利用圆的几何性质寻找解题途径 减少运算量 命题热点一 命题热点二 命题热点三 命题热点四 答案 解析 命题热点一 命题热点二 命题热点三 命题热点四 与圆有关的轨迹问题 思考 求轨迹方程常用的方法有哪些 例4已知圆M x 1 2 y2 1 圆N x 1 2 y2 9 动圆P与圆M外切并且与圆N内切 圆心P的轨迹为曲线C 1 求C的方程 2 l是与圆P 圆M都相切的一条直线 l与曲线C交于A B两点 当圆P的半径最长时 求 AB 解 由已知得圆M的圆心为M 1 0 半径r1 1 圆N的圆心为N 1 0 半径r2 3 设圆P的圆心为P x y 半径为R 1 因为圆P与圆M外切并且与圆N内切 所以 PM PN R r1 r2 R r1 r2 4 由椭圆的定义可知 曲线C是以M N为左 右焦点 长半轴长为2 命题热点一 命题热点二 命题热点三 命题热点四 2 对于曲线C上任意一点P x y 因为 PM PN 2R 2 2 所以R 2 当且仅当圆P的圆心为 2 0 时 R 2 所以当圆P的半径最长时 其方程为 x 2 2 y2 4 若l的倾斜角为90 则l与y轴重合 可得 AB 2 若l的倾斜角不为90 由r1 R知l不平行于x轴 设l与x轴的交点为Q 则 可求得Q 4 0 所以可设l y k x 4 命题热点一 命题热点二 命题热点三 命题热点四 题后反思1 求轨迹方程常用的方法有直接法 定义法 相关点法 坐标代入法 等 解决此类问题时要读懂题目给出的条件 进行合理转化 准确得出结论 2 涉及直线与圆的位置关系时 应多考虑圆的几何性质 利用几何法进行运算求解往往会减少运算量 命题热点一 命题热点二 命题热点三 命题热点四 对点训练4 1 过定点P 2 1 作动圆C x2 y2 2ay a2 2 0的一条切线 切点为T 则线段PT长的最小值是 2 已知过原点的动直线l与圆C1 x2 y2 6x 5 0相交于不同的两点A B 求圆C1的圆心坐标 求线段AB的中点M的轨迹C的方程 是否存在实数k 使得直线L y k x 4 与曲线C只有一个交点 若存在 求出k的取值范围 若不存在 说明理由 命题热点一 命题热点二 命题热点三 命题热点四 2 解 由x2 y2 6x 5 0 得 x 3 2 y2 4 从而可知圆C1的圆心坐标为 3 0 设线段AB的中点M x y 由弦的性质可知C1M AB 即C1M OM 故点M的轨迹是以OC1为直径的圆 命题热点一 命题热点二 命题热点三 命题热点四 命题热点一 命题热点二 命题热点三 命题热点四 规律总结 拓展演练 1 要注意几种直线方程的局限性 点斜式 斜截式方程要求直线不能与x轴垂直 两点式方程要求直线不能与坐标轴垂直 而截距式方程不能表示过原点的直线 也不能表示垂直于坐标轴的直线 2 求解与两条直线平行或垂直有关的问题时 主要是利用两条直线平行或垂直的充要条件 即若斜率存在时 斜率相等 或 互为负倒数 若出现斜率不存在的情况 可考虑用数形结合的方法去研究 3 直线与圆的位置关系 研究直线与圆的位置关系主要通过圆心到直线的距离和半径的比较来实现 两个圆的位置关系判断依据是两个圆心的距离与半径的差与和的比较 4 处理有关圆的问题 要特别注意圆心 半径及平面几何知识的应用 如经常用到弦心距 半径 弦长的一半构成的直角三角形 利用圆的一些特殊几何性质解题 往往使问题简化 规律总结 拓展演练 1 若直线3x 4y b与圆x2 y2 2x 2y 1 0相切 则b的值是 A 2或12B 2或 12C 2或 12D 2或12 答案 解析 规律总结 拓展演练 答案 解析 2 圆x2 y2 2x 8y 13 0的圆心到直线ax y 1 0的距离为1 则a 规律总结 拓展演练 答案 解析 3 已知平行直线l1 2x y 1 0 l2 2x y 1 0 则l1 l2的距离是 规律总结 拓展演练 4 在平面直角坐标系xOy中 曲线y x2 6x 1与坐标轴的交点都在圆C上 1 求圆C的方程 2 若圆C与直线x y a 0交于A B两点 且OA OB 求a的值 规律总结 拓展演练 由OA OB 则x1x2 y1y2 0 又y1 x1 a y2 x2 a 所以2x1x2 a x1 x2 a2 0 由 得a 1 满足 0 故a 1
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!