高考数学一轮复习 第二章 函数概念与基本初等函数1 第4讲 二次函数与幂函数课件 理 新人教A版.ppt

上传人:xt****7 文档编号:5626038 上传时间:2020-02-03 格式:PPT 页数:33 大小:1.71MB
返回 下载 相关 举报
高考数学一轮复习 第二章 函数概念与基本初等函数1 第4讲 二次函数与幂函数课件 理 新人教A版.ppt_第1页
第1页 / 共33页
高考数学一轮复习 第二章 函数概念与基本初等函数1 第4讲 二次函数与幂函数课件 理 新人教A版.ppt_第2页
第2页 / 共33页
高考数学一轮复习 第二章 函数概念与基本初等函数1 第4讲 二次函数与幂函数课件 理 新人教A版.ppt_第3页
第3页 / 共33页
点击查看更多>>
资源描述
第4讲二次函数与幂函数 知识梳理 1 二次函数 1 二次函数解析式的三种形式 一般式 f x 顶点式 f x a x m 2 n a 0 零点式 f x a x x1 x x2 a 0 ax2 bx c a 0 2 二次函数的图象和性质 2 幂函数 1 幂函数的定义一般地 形如的函数称为幂函数 其中x是自变量 为常数 2 常见的5种幂函数的图象 y x 3 常见的5种幂函数的性质 0 诊断自测 B 答案C 答案C 2 已知函数f x x2 mx 1 若对于任意x m m 1 都有f x 0成立 则实数m的取值范围是 规律方法 1 识别二次函数的图象主要从开口方向 对称轴 特殊点对应的函数值这几个方面入手 2 而用数形结合法解决与二次函数图象有关的问题时 要尽量规范作图 尤其是图象的开口方向 顶点 对称轴及与两坐标轴的交点要标清楚 这样在解题时才不易出错 答案B 考点二二次函数在给定区间上的最值问题 微题型1 轴定 区间动类型 例2 1 若函数y x2 2x 3在区间 0 m 上有最大值3 最小值2 求实数m的取值范围 解作出函数y x2 2x 3的图象如图 由图象可知 要使函数在 0 m 上取得最小值2 则1 0 m 从而m 1 当x 0时 y 3 当x 2时 y 3 所以要使函数取得最大值为3 则m 2 故所求m的取值范围为 1 2 规律方法由于二次函数图象的对称轴确定 所以不定区间的参量a应该以是否含有对称轴为标准进行分类讨论 例2 2 求函数f x ax2 2x在区间 0 1 上的最小值 微题型2 轴动 区间定类型 规律方法 1 二次函数在闭区间上的最值主要有三种类型 轴定区间定 轴动区间定 轴定区间动 不论哪种类型 解决的关键是考查对称轴与区间的关系 当含有参数时 要依据对称轴与区间的关系进行分类讨论 2 二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解 训练2 若将例2 2中的函数改为f x x2 2ax 其他不变 应如何求解 规律方法 1 可以借助幂函数的图象理解函数的对称性 单调性 2 在比较幂值的大小时 必须结合幂值的特点 选择适当的函数 借助其单调性进行比较 准确掌握各个幂函数的图象和性质是解题的关键 思想方法 1 求二次函数的解析式就是确定函数式f x ax2 bx c a 0 中a b c的值 应根据题设条件选用适当的表示形式 用待定系数法确定相应字母的值 2 二次函数与一元二次不等式密切相关 借助二次函数的图象和性质 可直观地解决与不等式有关的问题 3 二次函数的单调性与对称轴紧密相连 二次函数的最值问题要根据其图象以及所给区间与对称轴的关系确定 4 幂函数y x R 图象的特征 0时 图象过原点和 1 1 点 在第一象限的部分 上升 0时 图象不过原点 经过 1 1 点在第一象限的部分 下降 反之也成立 易错防范 1 对于函数y ax2 bx c 要认为它是二次函数 就必须满足a 0 当题目条件中未说明a 0时 就要讨论a 0和a 0两种情况 2 幂函数的图象一定会出现在第一象限内 一定不会出现在第四象限 至于是否出现在第二 三象限内 要看函数的奇偶性 幂函数的图象最多只能同时出现在两个象限内 如果幂函数图象与坐标轴相交 则交点一定是原点
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!