资源描述
(八)数列(B)1(2018江苏金陵中学期末)设数列an的前n项的和为Sn,且满足a12,对nN*,都有an1(p1)Sn2(其中常数p1),数列bn满足bnlog2(a1a2an)(1)求证:数列an是等比数列;(2)若p2,求b2 018的值;(3)若kN*,使得p2,记cn,求数列cn的前2(k1)项的和(1)证明因为nN*,都有an1(p1)Sn2,an2(p1)Sn12,所以两式相减得an2an1(p1)an1,即an2pan1,当n1时,a2(p1)a12pa1,所以an1pan(nN*),又a12,p1,所以an是以2为首项,p为公比的等比数列(2)解由(1)得an2pn1.bnlog2(a1a2an) log2所以b2 0182.(3)解由(1)得an2pn1.bnlog2(a1a2an) log2 log21.因为bn,所以当1nk1时,cnbn,当nk2时,cnbn.因此数列cn的前2(k1)项的和T2k2(b1b2bk1)(bk2bk3b2k2) .2已知数列an的前n项和为Sn,且a11,a22,设bnanan1,cnanan1(nN*)(1)若数列b2n1是公比为3的等比数列,求S2n;(2)若数列bn是公差为3的等差数列,求Sn;(3)是否存在这样的数列an,使得bn成等差数列和cn成等比数列同时成立,若存在,求出an的通项公式;若不存在,请说明理由解(1)b1a1a2123,S2n(a1a2)(a3a4)(a2n1a2n)b1b3b2n1.(2)bn1bnan2an3,a2k1,a2k均是公差为3的等差数列,a2k1a1(k1)33k2,a2ka2(k1)33k1,当n2k(kN*)时,SnS2k(a1a3a2k1)(a2a4a2k)3k2;当n2k1(kN*)时,SnS2k1S2ka2k3k23k13231.综上可知,Sn(3)bn成等差数列,2b2b1b3,即2(a2a3)(a1a2)(a3a4),a2a3a1a4,cn成等比数列,cc1c3.即(a2a3)2(a1a2)(a3a4),c2a2a30,a2a3a1a4,由及a11,a22,得a31,a42,设bn的公差为d,则bn1bn(an1an2)(anan1)d,即an2and,即数列an的奇数项和偶数项都构成公差为d的等差数列,又da3a1a4a20,数列an1,2,1,2,1,2,即an此时cn2,cn是公比为1的等比数列,满足题意存在数列an,an使得bn成等差数列和cn成等比数列同时成立3已知an,bn,cn都是各项不为零的数列,且满足a1b1a2b2anbncnSn,nN*,其中Sn是数列an的前n项和,cn是公差为d(d0)的等差数列(1)若数列an是常数列,d2,c23,求数列bn的通项公式;(2)若ann(是不为零的常数),求证:数列bn是等差数列;(3)若a1c1dk(k为常数,kN*),bncnk(n2,nN*),求证:对任意的n2,nN*,数列单调递减(1)解因为d2,c23,所以cn2n1.因为数列an是各项不为零的常数列,所以a1a2an,Snna1.则由cnSna1b1a2b2anbn及cn2n1,得n(2n1)b1b2bn,当n2时,(n1)(2n3)b1b2bn1,两式相减得bn4n3,n2.当n1时,b11也满足bn4n3.故bn4n3(nN*)(2)证明因为a1b1a2b2anbncnSn,当n2时,cn1Sn1a1b1a2b2an1bn1,两式相减得cnSncn1Sn1anbn,即(Sn1an)cnSn1cn1anbn,Sn1(cncn1)ancnanbn,所以Sn1dncnnbn.又Sn1(n1),所以dncnnbn,即dcnbn,(*)所以当n3时,dcn1bn1,两式相减得bnbn1d(n3),所以数列bn从第二项起是公差为d的等差数列又当n1时,由c1S1a1b1,得c1b1.当n2时,由(*)得b2dc2d(c1d)b1d,得b2b1d.故数列bn是公差为d的等差数列(3)证明由(2)得当n2时,Sn1(cncn1)ancnanbn,即Sn1dan(bncn)因为bncnk,所以bncnkd,即bncnkd,所以Sn1dankd,即Sn1kan,所以SnSn1an(k1)an.当n3时,Sn1(k1)an1,两式相减得an(k1)an(k1)an1,即anan1,故从第二项起数列an是等比数列,所以当n2时,ana2n2,bncnkcnkdc1(n1)kk2k(n1)kk2k(nk),另外由已知条件得(a1a2)c2a1b1a2b2.又c22k,b1k,b2k(2k),所以a21,因而ann2,n2.令dn(n2),则.因为(nk1)k(nk)(k1)n0,所以0,所以dn1dn,所以对任意的n2,nN*,数列单调递减
展开阅读全文