2019版高中化学上学期《分子的性质》教学设计.doc

上传人:xt****7 文档编号:3834912 上传时间:2019-12-25 格式:DOC 页数:18 大小:2.04MB
返回 下载 相关 举报
2019版高中化学上学期《分子的性质》教学设计.doc_第1页
第1页 / 共18页
2019版高中化学上学期《分子的性质》教学设计.doc_第2页
第2页 / 共18页
2019版高中化学上学期《分子的性质》教学设计.doc_第3页
第3页 / 共18页
点击查看更多>>
资源描述
2019版高中化学上学期分子的性质教学设计学习目标知识与技能1.了解极性共价键和非极性共价键;2.结合常见物质分子立体结构,判断极性分子和非极性分子;3.范德华力、氢键及其对物质性质的影响4.能举例说明化学键和分子间作用力的区别,例举含有氢键的物质5.从分子结构的角度,认识“相似相溶”规律。过程与方法1.能用分子结构的知识解释无机含氧酸分子的酸性。2.采用图表、比较、讨论、归纳、综合的方法进行教学,培养学生分析、归纳、综合的能力3.培养学生分析问题、解决问题的能力和严谨认真的科学态度情感、态度与价值观了解“手性分子”在生命科学等方面的应用学习重点1.多原子分子中,极性分子和非极性分子的判断。2.分子间作用力、氢键及其对物质性质的影响3.手性分子和无机含氧酸分子的酸性学习难点极性分子和非极性分子的判断教学环节教师活动学生活动设计意图环节一、复习引入引入在必修II的学习中,我们了解了共价键,共价键是两个或几个原子通过共用电子产生的吸引作用。在上一节,我们又学习了杂化轨道理论,根据杂化轨道理论我们可以将共价键分为键和键。回顾复习 练习环节二、共价键及其分类板书一、共价键及其分类1.按成键方式分:键和键讲键:对于含有未成对的s电子或p电子的原子,它可以通过s-s、s-p、p-p等轨道“头碰头”重叠形成共价键。键构成分子的骨架,可单独存在于两原子间,两原子间只有一个键键:当两个p轨道py-py、pz-pz以“肩并肩”方式进行重叠形成的共价键,叫做键。键的原子轨道重叠程度不如键大,所以键不如键牢固。键不像键那样集中在两核的连线上,原子核对电子的束缚力较小,电子能量较高,活动性较大,所以容易断裂。因此,一般含有共价双键和三键的化合物容易发生化学反应。板书2.按成键的共用电子对情况可分为:单键、双键、三键、配位键讲单键一般是键,以共价键结合的两个原子间只能有1个键。双键是由一个键和一个键组成的,而单双键交替结构是由若干个键和一个大键组成的。三键中有1个键和2个键组成的。而配位键是一种特殊的共价键,如果共价键的形成是由两个成键原子中的一个原子单独提供一对孤对电子进入另一个原子的空轨道共用而成键,这种共价键称为配位键。讲由不同原子形成的共价键,电子对会发生偏移,是极性键,极性键中的两个键合原子,一个呈正电性(+),另一个呈负电性(一)。板书 3.按成键原子的电负性差异可分为极性键和非极性键(1)、极性键:由不同原子形成的共价键。吸电子能力较强一方呈正电性(+),另一个呈负电性(-)。(2)、非极性键:由同种元素的原子形成的共价键是非极性共价键。讲成键原子的电负性差值越大,键的极性就愈强。当成键原子的电负性相差很大时,可以认为成键电子对完全移到电负性很大的原子一方。这时原子转变成为离子,从而形成离子键。讲分子有极性分子和非极性分子之分。我们可以这样认为,分子中正电荷的作用集中于一点,是正电中心;负电荷的作用集中于一点,是负电中心。在极性分子中,正电荷中心和负电中心不重合,使分子的某一个部分呈正电性(+),另一部分呈负电性(一);非极性分子的正电中心和负电中心重合。如果正电中心和负电中心重合,这样的分子就是非极性分子回顾复习 环节三、分子的极性 板书二、分子的极性1.极性分子和非极性分子:极性分子中,正电荷中心和负电中心不重合;非极性分子的正电中心和负电中心重合。投影 图228思考与交流根据图228,思考和回答下列问题:1.以下双原子分子中,哪些是极性分子,分子哪些是非极性分子?H2 02 C12 HCl2以下非金属单质分子中,哪个是极性分子,哪个是非极性分子?P4 C603以下化合物分子中,哪些是极性分子,哪些是非极性分子?CO2 HCN H20 NH3 BF3 CH4 CH3Cl汇报1.H2、02、C12 极性分子 HCl ,非极性分子。2.P4、C60都是非极性分子。3.CO2 BF3 CH4 为非极性分子,CH3Cl HCN H20 NH3为极性分子。讲分子的极性是分子中化学键的极性的向量和。只含非极性键的分子也不一定是非极性分子(如O3);含极性键的分子有没有极性,必须依据分子中极性键的极性的向量和是否等于零而定。如果分子结构是空间对称的,则键的极性相互抵消,各个键的极性和为零,整个分子就是非极性分子,否则是极性分子。投影小结共价键的极性与分子极性的关系分子共价键的极性分子中正负电荷中心结论举例同核双原子分子非极性键重合非极性分子H2、O2、N2 异核双原子分子极性键不重合极性分子CO、HF、HCl 异核多原子分子分子中各键的向量和为零重合非极性分子CO2、BF3、CH4 分子中各键的向量和不为零不重合极性分子H2O、NH3、CH3Cl板书2.分子的对称性(1)定义:具有一定空间构型的分子中的原子会以某一个面成一个轴处于相对称的位置,即分子具有对称性。讲例如CH4分子,相对于通过其中两个氢原子和碳原子所构成的平面,分子被分割成相同的两部分,这个面即为对称面。板书(2)关系:非极性分子具有对称性,极性分子中原子不位于对称位置。讲分子的极性对物质的熔点、沸点有一定的影响。板书3.分子的极性对物质的熔点、沸点的影响讲分子极性越大,分子间的电性作用越强,克服分子间的引力使物质熔化或汽化所需外界能量就越多,故熔点、沸点越高。过结合我们学过的知识,我们总结一下判断分子极性的方法有哪些板书4.ABm型分子极性的判断方法(1) 化合价法讲ABm型分子中中心原子的化合价的绝对值等于该元素的价电子数时,该分子为非极性分子,此时分子的空间结构对称。若中心原子的化合价的绝对值不等于其价电子数目,则分子的空间结构不对称,其分子为极性分子。投影化学式BF3 CO2 PCl5SO3(g)H2O NH3 SO2 中心原子化合价绝对值3456234中心原子价电子数3456656分子极性非极性非极性非极性非极性极性极性极性板书(2) 物理模型法:讲将ABm型分子的中心原子看做一个受力物体,将A、B间的极性共价键看做作用于中心原子上的力,根据ABm的空间构型,判断中心原子和平衡,如果受力平衡,则ABm型分子为非极性分子,否则为极性分子。板书(3) 根据所含键的类型及分子的空间构型判断讲当ABm型分子的空间构型是对称结构时,由于分子中正负电荷重心可以重合,故为非极性分子,如CO2是直线型,BF3是平面正三角型,CH4是正四面体形等均为非极性分子。当ABm型分子的空间构型不是空间对称结构时,一般为极性分子,如H2O为V型,NH3为三角锥形,它们均为极性分子。板书(4)根据中心原子最外层电子是否全部成键判断讲中心原子即其他原子围绕它成键的原子。分子中的中心原子最外层电子若全部成键,此分子一般为非极性分子;分子中的中心原子最外层电子未全部成键,此分子一般为极性分子。投影小结空间构型、键的极性和分子极性的关系类型实例两个键之间的夹角键的极性分子的极性空间构型X2H2、N2非极性键非极性分子直线形XYHCl、NO极性键极性分子直线形XY2(X2Y)CO2、CS2180极性键非极性分子直线形SO2 120极性键极性分子V形H2O、H2S 10430极性键极性分子V形XY3BF3120极性键非极性分子平面三角锥形NH3 10718极性键极性分子三角锥形XY4CH4、CCl410930极性键非极性分子正四面体自学科学视野表面活性剂和细胞膜自学提纲1.什么是表面活性剂?亲水基团?疏水基团?肥皂和洗涤剂的去污原理是什么?2.什么是单分子膜?双分子膜?举例说明。3.为什么双分子膜以头向外而尾向内的方式排列? 汇报1.分子的一端有极性,称为亲水基团。分子的另一端没有或者几乎没有极性,称为疏水基团。表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。表面活性剂在水中会形成亲水基团向外、疏水基团向内的“胶束”,由于油渍等污垢是疏水的,会被包裹在胶束内腔,这就是肥皂和洗涤剂的去污原理。2.由于表面活性剂会分散在水的液体表面形成一层疏水基团朝向空气的“单分子层”,又称“单分子膜”。双分子膜是由大量两性分子组装而成的,3.这是由于细胞膜的两侧都是水溶液,水是极性分子,而构成膜的两性分子的头基是极性基团而尾基是非极性基团。听讲理解阅读归纳总结判断环节四、范德华力第二课时:引入我们知道,化学反应的实质是旧键的断裂和新键的形成的过程,化学键主要影响了化学性质,那么,物质的溶沸点、溶解性又受什么影响呢?这节课就让我们来主要研究一下物理性质的影响因素。讲降温加压气体会液化,降温液体会凝固,这一事实表明,分子之间存在着相互作用力。范德华(vandcrWaRls)是最早研究分子间普遍存在作用力的科学家,因而把这类分子问作用力称为范德华力。范德华力很弱,约比化学键能小l一2数量级。相对分子质量越大,范德华力越大;分子的极性越大,范德华力也越大。板书三、分子间作用力及其对物质的影响1.分子间作用力(1) 定义:把分子聚集在一起的作用力叫做分子间作用力,又称范德华力,其实质是分子间的电性引力讲从气体在降低温度、增大压强时能够凝结成液态或固态(在这个过程中,气体分子间的距离不断缩小,并由不规则运动的混乱状态转变成为规则排列)的事实可以证明分子存在着相互作用。投影讲范德华力:分子之间存在着相互作用力。范德华力很弱,约比化学键能小l一2数量级。相对分子质量越大,范德华力越大;分子的极性越大,范德华力也越大。板书(2)大小判断:1 影响分子间作用力的主要因素:分子的相对分子质量、分子的极性等2 组成和结构相似的物质,相对分子质量越大,分子间作用力越大。3 分子的极性越强,分子间作用力越大。学与问怎样解释卤素单质从F2I2的熔、沸点越来越高?汇报相对分子质量越大,范德华力越大,熔、沸点越来越高。板书2.分子间作用力对物质的熔、沸点的影响:范德华力越大,物质的熔沸点越高。投影讲能量远小于化学键能,分子间作用力一般只有每摩尔几千焦至几十千焦,比化学能小1-2个数量极,分子间作用力主要影响分子晶体类型物质的物理性质,而化学键主要影响物质的化学性质。存在于分子之间,且分子间充分接近时才有相互间的作用力,如固体和液体物质中。问夏天经常见到许多壁虎在墙壁或天花板上爬行,却掉不下来,为什么?讲壁虎为什么能在天花板土爬行自如?这曾是一个困扰科学家一百多年的谜。用电子显微镜可观察到,壁虎的四足覆盖着几十万条纤细的由角蛋白构成的纳米级尺寸的毛。壁虎的足有多大吸力?实验证明,如果在一个分币的面积土布满100万条壁虎足的细毛,可以吊起20kg重的物体。近年来,有人用计算机模拟,证明壁虎的足与墙体之间的作用力在本质上是它的细毛与墙体之间的范德华力。投影设问你是否知道,常见物质中,水是熔、沸点较高的液体之一?你是否知道,冰的密度比液态的水小?读图分析归纳总结交流讨论并填表练习环节五:氢键投影为什么水、氟化氢和氨的沸点出现反常。板书四、氢键及其对物质性质的影响讲为了解释水的这些奇特性质,人们提出了氢键的概念。氢键是除范德华力外的另一种分子间作用力,它是由已经与电负性很强的原子形成共价键的氢原子(如水分子中的氢)与另一个分子中电负性很强的原子(如水分子中的氧)之间的作用力。板书 1.氢键:是由已经与电负性很强的原子形成共价键的氢原子(如水分子中的氢)与另一个分子中电负性很强的原子(N、O、F)之间的作用力。讲以HF为例,在HF分子中,由于F原子吸引电子的能力很强,H-F键的极性很强,共用电子对强烈地偏向F原子,亦即H原子的电子云被F原子吸引,使H原子几乎成为“裸露”为质子。这个半径很小、带部分正电荷的H核,与另一个HF分子带部分负电荷的F原子相互吸引。这种静电吸引作用就是氢键。讲氢键不是化学键,为了与化学键相区别,在下图中用“”来表示氢键,注意三个原子要在同一条直线上。板书2、氢键表示方法:XHY。投影讲在用X-HY表示的氢键中,氢原子位于其间是氢键形成的最重要条件之一,同时,氢原子两边的X原子和Y原子所属元素具有很强的电负性、很小的原子半径是氢键形成的另一个条件。由于X原子和Y原子具有强烈吸引电子的作用,氢键才能存在。这类原子应该是位于元素周期表的右上角元素的原子,主要是氮原子、氧原子和氟原子。有机物分子中含有羟基时,通常能形成氢键。板书3、氢键的形成条件投影讲由于氢键的存在,大大加强了水分子之间的作用力,使水的熔、沸点较高。另外,实验还证明,接近水的沸点的水蒸气的相对分子质量测定值比用化学式H2O计算出来的相对分子质量大一些。用氢键能够解释这种异常性:接近水的沸点的水蒸气中存在相当量的水分子因氢键而相互“缔合”,形成所谓“缔合分子”。后来的研究证明,氢键普遍存在于已经与N、O、F等电负性很大的原子形成共价键的氢原子与另外的N、O、F等电负性很大的原子之间。例如,不仅氟化氢分子之间以及氨分子之间存在氢键,而且它们跟水分子之间也存在氢键。板书4.氢键的类型:分子间氢键、分子间内氢键讲氢键既可以存在于分子之间,也可存在于分子内部的原子团之间。如邻羟基苯甲醛在分子内形成了氢键,在分子之间不存在氢键,对羟基苯甲醛不可能形成分子内氢键,只能在分子间形成氢键,因而,前者的沸点低于后者的沸点。投影分子内氢键和分子间氢键 强调尽管人们把氢键也称作“键”,但与化学键比较,氢键属于一种较弱的作用力,其大小介于范德华力和化学键之间,约为化学键的十分之几,不属于化学键。讲下面,让我们回到之前的问题,为什么水、氟化氢和氨的沸点出现反常。如上图所示,NH3、HF和H2O的沸点反常,分子间形成氢键会使物质的熔点和沸点升高,这是因为固体熔化或液体汽化时必须破坏分子间的氢键,从而需要消耗较多能量的缘故。板书5、氢键对物质的影响:分子间氢键使物质熔点升高分子内氢键使物质熔点降低讲以水为例,由于水分子间形成的氢键,增大了水分子间的作用,使水的熔沸点比同周期元素中H2S高。当水结冰时,体积膨胀,密度减小。这些反应的性质均与氢键有关。投影讲在水蒸气中水以单个H2O 分子形式存在;在液态水中,经常是几个水分子通过氢键结合起来,形成(H2O)n;在固态水(冰)中,水分子大范围地以氢键互相联结,形成相当疏松的晶体,从而在结构中有许多空隙,造成体积膨胀,密度减少,因此冰能浮在水面上。水的这种性质对水生物生存有重要的意义。讲除此之外,接近水的沸点时,用实验测定的水蒸气的相对分子质量比用化学式H2O计算出来的相对分子质量大一些。这也是由于氢键的存在使接近水的沸点的水蒸气中存在相当量的水分子相互“缔合”,形成了一些“缔合原子”的原因。阅读资料卡片及科学视野:生物大分子中的氢键。 投影小结分子间作用力与氢键的比较 分类分子间作用力(范德华力)氢键概念物质分子之间存在的微弱相互作用(实际上也是静电作用)分子中与氢原子形成共价键的非金属原子,如果吸引电子的能力很强,原子半径又很小,则使氢原子几乎成为“裸露”的质子,带部分正电荷。这样的分子之间,氢核与带部分负电荷的非金属原子相互吸引。这种静电作用就是氢键存在范围分子间某些含氢化合物分子间(如HF、H2O、NH3)及某些有机化合物分子内强度比较比化学键弱得多比化学键弱得多,比分子间作用力稍强影响强度的因素随着分子极性和相对分子质量的增大而增大。组成和结构相似的物质,相对分子质量越大,分子间作用力越大形成氢键的非金属原子,其吸引电子的能力 越强、半径越小,则氢键越强。听讲理解阅读归纳总结问题讨论归纳总结环节六、溶解性板书五、溶解性讲物质相互溶解的性质十分复杂,有许多制约因素,如温度、压强等。从分子结构的角度,存在“相似相溶”的规律。蔗糖和氨易溶于水,难溶于四氯化碳;而萘和碘却易溶于四氯化碳,难溶于水。如果分析溶质和溶剂的结构就可以知道原因了:蔗糖、氨、水是极性分子,而萘、碘、四氯化碳是非极性分子。通过对许多实验的观察和研究,人们得出了一个经验性的“相似相溶”的规律:非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂。板书1.“相似相溶”的规律:非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂。讲由于极性分子间的电性作用,使得极性分子组成的溶质易溶于极性分子组成的溶剂;难溶于非极性分子组成的溶剂;非极性分子组成的溶质易溶于非极性分子组成的溶剂。讲水是极性溶剂,根据“相似相溶”,极性溶质比非极性溶质在水中的溶解度大。如果存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。相反,无氢键相互作用的溶质在有氢键的水中的溶解度就比较小。投影板书2.溶解度影响因素:(1) 溶剂的极性 讲此外,“相似相溶”还适用于分子结构的相似性。例如,乙醇的化学式为CH3CH20H,其中的一OH与水分子的一OH相近,因而乙醇能与水互溶;而戊醇CH3CH2CH2CH2CH20H中的烃基较大,其中的一OH跟水分子的一OH的相似因素小得多了,因而它在水中的溶解度明显减小。板书 (2) 分子结构的相似性。讲溶质分子与溶剂分子之间的范德华力越大,则溶质分子的溶解度越大。如CH4和HCl在水中的溶解情况,由于CH4与H2O分子间的作用力很小,故CH4几乎不溶于水,而HCl与H2O分子间的作用力较大,故HCl极易溶于水;同理,Br2、I2与苯分子间的作用较大,故Br2、I2易溶于苯中,而H2O与苯分子间的作用力很小,故H2O很难溶于苯中。板书(3)分子间作用力和氢键讲当溶质分子和溶剂分子间形成氢键时,会使溶质的溶解度增大。强调另外,如果遇到溶质与水发生化学反应的情况,如SO2与水发生反应生成亚硫酸,后者可溶于水,因此,将增加SO2的溶解度。思考与交流1.比较NH3和CH4在水中的溶解度。怎样用相似相溶规律理解它们的溶解度不同?2为什么在日常生活中用有机溶剂(如乙酸乙酯等)溶解油漆而不用水?3.在一个小试管里放入一小粒碘晶体,加入约5mL蒸馏水,观察碘在水中的溶解性(若有不溶的碘,可将碘水溶液倾倒在另一个试管里继续下面的实验)。在碘水溶液中加入约1mL四氯化碳(CCl4),振荡试管,观察碘被四氯化碳萃取,形成紫红色的碘的四氯化碳溶液。再向试管里加入1mL浓碘化钾(KI)水溶液,振荡试管,溶液紫色变浅,这是由于在水溶液里可发生如下反应:I2+II3。实验表明碘在纯水还是在四氯化碳中溶解性较好?为什么?汇报1.NH3为极性分子,CH4为非极性分子,而水是极性分子,根据“相似相溶”规则,NH3易溶于水,而CH4不易溶于水。并且NH3与水之间还可形成氢键,使得NH3更易溶于水。2.油漆是非极性分子,有机溶剂如乙酸乙酯也是非极性溶剂,而水为极性溶剂,根据“相似相溶”规则,应当用有机溶剂溶解油漆而不能用水溶解油漆。3.实验表明碘在四氯化碳溶液中的溶解性较好。这是因为碘和四氯化碳都是非极性分子,非极性溶质一般能溶于非极性溶剂,而水是极性分子。展示模型:设问看一看两个分子的立体结构,像不像一双手那样?它们不能相互叠合?练习计算价电子环节七、手性板书六、手性实践每个同学亮出自己的左又手。看能否完全重合?投影板书1.具有完全相同的组成和原子排列的一对分子,如同左手与右手一样互为镜像,却在三维空间里不能重叠,互称手性异构体。有手性异构体的分子叫做手性分子。讲手性分子在生命科学和生产手性药物方面有广泛的应用。如图所示的分子,是由一家德国制药厂在1957年10月1日上市的高效镇静剂,中文药名为“反应停”,它能使失眠者美美地睡个好觉,能迅速止痛并能够减轻孕妇的妊娠反应。然而,不久就发现世界各地相继出现了一些畸形儿,后被科学家证实,是孕妇服用了这种药物导致的随后的药物化学研究证实,在这种药物中,只有图左边的分子才有这种毒副作用,而右边的分子却没有这种毒副作用。人类从这一药物史上的悲剧中吸取教训,不久各国纷纷规定,今后凡生产手性药物,必须把手性异构体分离开,只出售能治病的那种手性异构体的药物。投影板书2.手性碳原子:如果一个碳原子所连接的四个原子或原子团各不相同,则该碳原子称为手性碳原子。讲xx年10月诺贝尔奖授予了在手性催化反应方面所取得卓著成绩的美国和日本的三位科学家。有机物分子中如果在一个碳原子上连接有4个不同的基团,则会形成两种不同的四面体空间构型,它们互为镜像,互称为对映异构体,如同人的左右手一样,外形相似而不能重合。科学上把这种现象称为“手性”,这样的碳原子称为手性碳原子,具有这种特性的分子称为手性分子,例如乳酸分子:投影讲合成药物绝大多数为手性分子。研究表明,在药物分子的对映异构体中,只有一种对疾病有治疗作用,而另一种则没有药效,甚至对人体有毒副作用。手性催化剂只催化或者主要催化一种手性分子的合成,可以比喻成握手手性催化剂像迎宾的主人伸出右手,被催化合成的手性分子像客人,总是伸出右手去握手。板书3、手性分子的用途 讲构成生命体的有机物约大多数为手性分子。两个手性分子的性质不同,且手性有机物中必定含手性碳原子。手性分子的主要应用是生产手性药物和手性催化剂,手性催化剂只催化或主要催化一种手性分子的合成。自学科学史话:了解巴斯德实验室合成的有机物酒石酸盐并制得手性机物酒石酸盐过程。投影 讲无机含氧酸看成是由氢离子和酸根离子组成的。例如,H2S04是由H和SO42组成,实际上在它们的分子结构中,氢离子却是和酸根上的一个氧相连接的,所以它们的结构式应是:投影环节八、无机含氧酸分子的酸性板书七、无机含氧酸分子的酸性讲无机含氧酸之所以能显酸性,是因为其分子中含有OH,而OH上的H在水分子的作用下能够电离H、而显示一定的酸性。讲我们知道,H2S04和HN03是强酸,而H2S03和HN02是弱酸,即从酸性强弱来看:H2S03H2S04 HN02HN03 在氯的含氧酸中也存在类似的情况酸性强弱 HClOHCl02HCl02HClO4板书1.对于同一种元素的含氧酸来说,该元素的化合价越高,其含氧酸的酸性越强。思考那么如何解释这种现象呢?讲化学上有一种见解,认为含氧酸的通式可写成(HO)mROn,如果成酸元素R相同,则n值越大,R的正电性越高,导致ROH中O的电子向R偏移,因而在水分子的作用下,也就越容易电离出H,即酸性越强。板书2.含氧酸的通式可写成(HO)mROn,R相同,n值越大,酸性越强。讲如硼酸(H3BO3 、(HO)3B)强度与次氯酸(HOCl)相近,但我们要注意的是,碳酸可表示为(HO)2CO,非羟基氧原子数为1,酸强度与中强酸磷酸似乎相似。但碳酸实为弱酸。原因是CO2溶于水中只有很小的一部分生成H2CO3,与按CO2全部转化为H2CO3来估算的强度相比,酸性要弱很多,故H2CO3为弱酸。小结我们还要注意的是,酸性的大小本堂小结:当堂检测、布置作业板书设计
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!