资源描述
2019-2020年高考数学一轮复习 9.3 导数的应用(二) 文一、选择题1(xx湖南卷)若0x1x21,则()Aex2ex1ln x2ln x1 Bex2ex1ln x2ln x1Cx2ex1x1ex2 Dx2ex1x1ex2解析令f(x),则f(x).当0x1时,f(x)0,即f(x)在(0,1)上单调递减,0x1x21,f(x2)f(x1),即,x2ex1x1ex2,故选C.答案C2某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总营业收入R与年产量x的函数关系是RR(x)则总利润最大时,每年生产的产品是()A100 B150 C200 D300解析由题意得,总成本函数为CC(x)20 000100x,总利润P(x)又P(x)令P(x)0,得x300,易知x300时,总利润P(x)最大答案D3(xx金华十校联考)若函数f(x)2x39x212xa恰好有两个不同的零点,则a可能的值为()A4 B6 C7 D8解析由题意得f(x)6x218x126(x1)(x2),由f(x)0得x1或x2,由f(x)0得1x2,所以函数f(x)在(,1),(2,)上单调递增,在(1,2)上单调递减,从而可知f(x)的极大值和极小值分别为f(1),f(2),若欲使函数f(x)恰好有两个不同的零点,则需使f(1)0或f(2)0,解得a5或a4,而选项中只给出了4,所以选A.答案A4设函数f(x)的定义域为R,x0(x00)是f(x)的极大值点,以下结论一定正确的是()AxR,f(x)f(x0)Bx0是f(x)的极小值点Cx0是f(x)的极小值点Dx0是f(x)的极小值点解析A错,因为极大值未必是最大值;B错,因为函数yf(x)与函数yf(x)的图象关于y轴对称,x0应是f(x)的极大值点;C错,函数yf(x)与函数yf(x)的图象关于x轴对称,x0应为f(x)的极小值点;D正确,函数yf(x)与yf(x)的图象关于原点对称,x0应为yf(x)的极小值点答案D5(xx新课标全国卷)已知函数f(x)ax33x21,若f(x)存在唯一的零点x0,且x00,则a的取值范围是()A(2,) B(1,)C(,2) D(,1)解析(1)当a0时,显然f(x)有两个零点,不符合题意(2)当a0时,f(x)3ax26x,令f(x)0,解得x10,x2.当a0时,0,所以函数f(x)ax33x21在(,0)和上为增函数,在上为减函数,因为f(x)存在唯一零点x0,且x00,则f(0)0,即10,不成立当a0时,0,所以函数f(x)ax33x21在和(0,)上为减函数,在上为增函数,因为f(x)存在唯一零点x0,且x00,则f0,即a310,解得a2或a2,又因为a0,故a的取值范围为(,2)答案C二、填空题6(xx唐山模拟)已知a0,函数f(x)x3ax2bxc在区间2,2上单调递减,则4ab的最大值为_解析f(x)x3ax2bxc,f(x)3x22axb,函数f(x)在区间2,2上单调递减,即即4ab12,4ab的最大值为12.答案127(xx湖州质检)已知函数f(x)ax33x1对x(0,1总有f(x)0成立,则实数a的取值范围是_ .解析当x(0,1时不等式ax33x10可化为a,设g(x),x(0,1,g(x).g(x)与g(x)随x的变化情况如下表:xg(x)0g(x) 极大值4 因此g(x)的最大值为4,则实数a的取值范围是4,)答案4,)8已知函数f(x)x3ax24在x2处取得极值,若m,n1,1,则f(m)f(n)的最小值是_解析对函数f(x)求导得f(x)3x22ax,由函数f(x)在x2处取得极值知f(2)0,即342a20,a3.由此可得f(x)x33x24,f(x)3x26x,易知f(x)在(1,0)上单调递减,在(0,1)上单调递增,当m1,1时,f(m)minf(0)4.又f(x)3x26x的图象开口向下,且对称轴为x1,当n1,1时,f(n)minf(1)9.故f(m)f(n)的最小值为13.答案13三、解答题9(xx衢州一模)设函数f(x)ln x,g(x)ax,函数f(x)的图象与x轴的交点也在函数g(x)的图象上,且在此点有公切线(1)求a,b的值;(2)试比较f(x)与g(x)的大小解(1)f(x)ln x的图象与x轴的交点坐标是(1,0),依题意,得g(1)ab0,又f(x),g(x)a,又f(x)与g(x)在点(1,0)处有公切线,g(1)f(1)1,即ab1,由得a,b.(2)令F(x)f(x)g(x),则F(x)ln xln xx(x0),F(x)20.F(x)在(0,)上为减函数,且F(1)0,当0x1时,F(x)F(1)0,即f(x)g(x);当x1时,F(x)F(1)0,即f(x)g(x);当x1时,F(x)F(1)0,即f(x)g(x)综上可知,当0xg(x);当x1时,f(x)g(x);当x1时,即f(x)g(x)10(xx新课标全国卷)已知函数f(x)x33x2ax2,曲线yf(x)在点(0,2)处的切线与x轴交点的横坐标为2.(1)求a;(2)证明:当k1时,曲线yf(x)与直线ykx2只有一个交点(1)解f(x)3x26xa,f(0)a,曲线yf(x)在点(0,2)处的切线方程为yax2.由题设得2,所以a1.(2)证明由(1)知,f(x)x33x2x2.设g(x)f(x)kx2x33x2(1k)x4.由题设知1k0.当x0时,g(x)3x26x1k0,g(x)单调递增,g(1)k10,g(0)4,所以g(x)0在(,0上有唯一实根当x0时,令h(x)x33x24,则g(x)h(x)(1k)xh(x)h(x)3x26x3x(x2),h(x)在(0,2)上单调递减,在(2,)上单调递增,所以g(x)h(x)h(2)0.所以g(x)0在(0,)上没有实根综上,g(x)0在R上有唯一实根,即曲线yf(x)与直线ykx2只有一个交点能力提升题组(建议用时:35分钟)11(xx辽宁卷)当x2,1时,不等式ax3x24x30恒成立,则实数a的取值范围是()A5,3 B.C6,2 D4,3解析由题意知x2,1都有ax3x24x30,即ax3x24x3在x2,1上恒成立当x0时,ax3x24x30恒成立,即30,aR.当0x1时,a.令t(t1),g(t)3t34t2t,因为g(t)9t28t10(t1),所以g(t)在1,)上单调递减,g(t)maxg(1)6(t1),所以a6.当2x0时,a,同理,g(t)在(,1上递减,在上递增因此g(t)ming(1)2,所以a2.综上,6a2.答案C12(xx大连模拟)已知函数f(x)x3ax2xc(xR),下列结论错误的是()A函数f(x)一定存在极大值和极小值B若函数f(x)在(,x1),(x2,)上是增函数,则x2x1C函数f(x)的图象是中心对称图形D函数f(x)一定存在三个零点解析对于A,f(x)3x22ax1,4a2120,因此函数f(x)3x22ax1恒有两个相异零点x3,x4(其中x3x4),易知函数f(x)的递增区间是(,x3)与(x4,),递减区间是(x3,x4),函数f(x)一定存在极大值与极小值,选项A正确对于B,由A知,x3x4,x3x4,则x4x3,又x1x3,x4x2,因此x2x1x4x3,选项B正确对于C,函数f(x)的解析式可以通过配方的方法化为形如(xm)3n(xm)h的形式,通过平移函数图象,函数的解析式可以化为yx3nx的形式,这是一个奇函数,其图象关于坐标原点对称,故函数f(x)的图象是中心对称图形,所以C正确对于D,取ac1,得f(x)x3x2x1(x1)2(x1),此时函数f(x)仅有两个相异零点,因此选项D不正确综上所述,选D.答案D13已知f(x)xex,g(x)(x1)2a,若x1,x2R,使得f(x2)g(x1)成立,则实数a的取值范围是_解析f(x)exxexex(1x)当x1时,f(x)0,函数f(x)单调递增;当x1时,f(x)0,函数f(x)单调递减所以函数f(x)的最小值为f(1).而函数g(x)的最大值为a,则由题意,可得a,即a.答案14(xx北京卷)已知函数f(x)x2xsin xcos x.(1)若曲线yf(x)在点(a,f(a)处与直线yb相切,求a与b的值;(2)若曲线yf(x)与直线yb有两个不同交点,求b的取值范围解由f(x)x2xsin xcos x,得f(x)2xsin xx(sin x)sin xx(2cos x)(1)因为曲线yf(x)在点(a,f(a)处与直线yb相切,所以f(a)a(2cos a)0,bf(a)解得a0,bf(0)1.(2)设g(x)f(x)bx2xsin xcos xb.令g(x)f(x)0x(2cos x)0,得x0.当x变化时,g(x),g(x)的变化情况如下表:x(,0)0(0,)g(x)0g(x) 1b所以函数g(x)在区间(,0)上单调递减,在区间(0,)上单调递增,且g(x)的最小值为g(0)1b.当1b0时,即b1时,g(x)0至多有一个实根,曲线yf(x)与yb最多有一个交点,不合题意当1b1时,有g(0)1b4b2b1b0.yg(x)在(0,2b)内存在零点,又yg(x)在R上是偶函数,且g(x)在(0,)上单调递增,yg(x)在(0,)上有唯一零点,在(,0)也有唯一零点故当b1时,yg(x)在R上有两个零点,则曲线yf(x)与直线yb有两个不同交点综上可知,如果曲线yf(x)与直线yb有两个不同交点,那么b的取值范围是(1,)15(xx四川卷)已知函数f(x)exax2bx1,其中a,bR,e2.718 28为自然对数的底数(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间0,1上的最小值;(2)若f(1)0,函数f(x)在区间(0,1)内有零点,证明:e2a1.(1)解由f(x)exax2bx1,有g(x)f(x)ex2axb,所以g(x)ex2a.当x0,1时,g(x)12a,e2a,当a时,g(x)0,所以g(x)在0,1上单调递增,因此g(x)在0,1上的最小值是g(0)1b;当a时,g(x)0,所以g(x)在0,1上单调递减因此g(x)在0,1上的最小值是g(1)e2ab;当a时,令g(x)0,得xln (2a)(0,1),所以函数g(x)在区间0,ln(2a)上单调递减,在区间(ln(2a),1上单调递增于是,g(x)在0,1上的最小值是g(ln(2a)2a2aln(2a)b.综上所述,当a时,g(x)在0,1上的最小值是g(0)1b;当a时,g(x)在0,1上的最小值是g(ln(2a)2a2aln(2a)b;当a时,g(x)在0,1上的最小值是g(1)e2ab.(2)证明设x0为f(x)在区间(0,1)内的一个零点,则由f(0)f(x0)0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减则g(x)不可能恒为正,也不可能恒为负故g(x)在区间(0,x0)内存在零点x1,同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点由(1)知,当a时,g(x)在0,1上单调递增,故g(x)在(0,1)内至多有一个零点当a时,g(x)在0,1上单调递减,故g(x)在(0,1)内至多有一个零点,所以a.此时g(x)在区间0,ln(2a)上单调递减,在区间(ln(2a),1上单调递增,因此x1(0,ln(2a),x2(ln(2a),1),必有g(0)1b0,g(1)e2ab0.由f(1)0有abe12,有g(0)ae20,g(1)1a0,解得e2a1.所以函数f(x)在区间(0,1)内有零点时,e2a1.
展开阅读全文