资源描述
2019-2020年高考数学备考试题库 第八章 第5节 椭圆 文(含解析)1. (xx辽宁,5分)已知椭圆C: 1,点M与C的焦点不重合若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则 |AN|BN|_.解析:取MN的中点G,G在椭圆C上,因为点M关于C的焦点F1,F2的对称点分别为A,B,故有|GF1|AN|,|GF2|BN|,所以|AN|BN|2(|GF1|GF2|)4a12.答案:12.2(xx江苏,5分)在平面直角坐标系xOy中,直线x2y30被圆(x2)2(y1)24截得的弦长为_解析:因为圆心(2,1)到直线x2y30的距离d,所以直线x2y30被圆截得的弦长为2.答案:3. (xx辽宁,12分)圆 x2y24的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图)(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:yx 交于A,B两点若PAB 的面积为2,求C的标准方程解:(1)设切点坐标为(x0,y0)(x00,y00),则切线斜率为,切线方程为yy0(xx0),即x0xy0y4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S.由xy42x0y0知当且仅当x0y0时x0y0有最大值,即S有最小值,因此点P的坐标为(,)(2)设C的标准方程为1(ab0),点A(x1,y1),B(x2,y2)由点P在C上知1,并由得b2x24x62b20,又x1,x2是方程的根,因此由y1x1,y2x2,得|AB|x1x2|.由点P到直线l的距离为及SPAB|AB|2得b49b2180,解得b26或3,因此b26,a23(舍)或b23,a26.从而所求C的方程为1.4. (xx江西,5分)设椭圆 C:1(ab0)的左、右焦点为 F1,F2,过F2 作x 轴的垂线与C相交于A,B两点,F1B 与y 轴交于点D,若ADF1B,则椭圆 C的离心率等于_解析:由题意知F1(c,0),F2(c,0),其中c,因为过F2且与x轴垂直的直线为xc,由椭圆的对称性可设它与椭圆的交点为A,B.因为AB平行于y轴,且|F1O|OF2|,所以|F1D|DB|,即D为线段F1B的中点,所以点D的坐标为,又ADF1B,所以kADkF1B1,即1,整理得b22ac,所以(a2c2)2ac,又e,0eb0),由题意知解得a,b1,因此椭圆C的方程为y21.(2)()当A,B两点关于x轴对称时,设直线AB的方程为xm,由题意得m0或0m0,所以t2或t.()当A,B两点关于x轴不对称时,设直线AB的方程为ykxh,将其代入椭圆的方程y21,得(12k2)x24khx2h220.设A(x1,y1),B(x2,y2)由判别式0可得12k2h2,此时x1x2,x1x2,y1y2k(x1x2)2h,所以|AB|2 .因为点O到直线AB的距离d,所以SAOB|AB|d2 |h|.又SAOB,所以 |h|.令n12k2,代入整理得3n216h2n16h40,解得n4h2或nh2,即12k24h2或12k2h2.又tt()t(x1x2,y1y2),因为P为椭圆C上一点,所以t2221,即1.将代入得t24或t2.又t0,所以t2或t.经检验,符合题意综合()()得t2或t.7(xx新课标全国,5分)设椭圆C:1(ab0)的左、右焦点分别为F1,F2,P是C上的点,PF2F1F2,PF1F230,则C的离心率为()A.B.C. D.解析:本题主要考查椭圆离心率的计算,涉及椭圆的定义、方程与几何性质等知识,意在考查考生的运算求解能力法一:由题意可设|PF2|m,结合条件可知|PF1|2m,|F1F2|m,故离心率e.法二:由PF2F1F2可知P点的横坐标为c,将xc代入椭圆方程可解得y,所以|PF2|.又由PF1F230可得|F1F2|PF2|,故2c,变形可得(a2c2)2ac,等式两边同除以a2,得(1e2)2e,解得e或e(舍去)答案:D8(xx辽宁,5分)已知椭圆C:1(ab0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|10,|BF|8,cosABF,则C的离心率为()A. B.C. D.解析:本题主要考查圆锥曲线的定义、离心率,解三角形等知识,意在考查考生对圆锥曲线的求解能力以及数据处理能力由余弦定理得,|AF|6,所以2a6814,又2c10,所以e.答案:B9(xx四川,5分)从椭圆1(ab0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且ABOP(O是坐标原点),则该椭圆的离心率是()A. B.C. D.解析:本题主要考查椭圆的简单几何性质,意在考查曲线和方程这一解析几何的基本思想由已知,点P(c,y)在椭圆上,代入椭圆方程,得P.ABOP,kABkOP,即,则bc,a2b2c22c2,则,即该椭圆的离心率是.答案:C10(xx福建,4分)椭圆:1(ab0)的左、右焦点分别为F1,F2,焦距为2c.若直线y(xc)与椭圆的一个交点M满足MF1F22MF2F1,则该椭圆的离心率等于_解析:本题主要考查椭圆的定义、图像和性质等基础知识,意在考查考生的数形结合能力、转化和化归能力、运算求解能力直线y(xc)过点F1(c,0),且倾斜角为60,所以MF1F260,从而MF2F130,所以MF1MF2.在RtMF1F2中,|MF1|c,|MF2|c,所以该椭圆的离心率e1.答案:111.(xx安徽,13分)如图,F1,F2分别是椭圆C:1(ab0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,F1AF260.(1)求椭圆C的离心率;(2)已知AF1B的面积为40,求a,b的值解:(1)由题意可知,AF1F2为等边三角形,a2c,所以e.(2)法一:a24c2,b23c2,直线AB的方程可为y(xc)将其代入椭圆方程3x24y212c2,得B(c,c)所以|AB|c0|c.由SAF1B|AF1|AB|sin F1ABaca240,解得a10,b5.法二:设|AB|t.因为|AF2|a,所以|BF2|ta.由椭圆定义|BF1|BF2|2a可知,|BF1|3at.再由余弦定理(3at)2a2t22atcos 60可得,ta.由SAF1Baaa240知,a10,b5.12(xx新课标全国,5分)设F1,F2是椭圆E:1(ab0)的左、右焦点,P为直线x上一点,F2PF1是底角为30的等腰三角形,则E的离心率为()A. B.C. D.解析:由题意可得|PF2|F1F2|,所以2(ac)2c,所以3a4c,所以e.答案:C13(xx江西,5分)椭圆1(ab0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()A.B.C. D.2解析:依题意得|F1F2|2|AF1|F1B|,即4c2(ac)(ac)a2c2,整理得5c2a2,所以e.答案:B14(2011浙江,5分)已知椭圆C1:1(ab0)与双曲线C2:x21有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点若C1恰好将线段AB三等分,则()Aa2Ba213Cb2 Db22解析:对于直线与椭圆、圆的关系,如图所示,设直线AB与椭圆C1的一个交点为C(靠近A的交点),则|OC|,因tanCOx2,sinCOx,cosCOx,则C的坐标为(,),代入椭圆方程得1,a211b2.5a2b2,b2.答案:C15(2011陕西,12分)设椭圆C:1(ab0)过点(0,4),离心率为.()求C的方程;()求过点(3,0)且斜率为的直线被C所截线段的中点坐标解:()将(0,4)代入C的方程得1,b4,又e得,即1,a5,C的方程为1.()过点(3,0)且斜率为的直线方程为y(x3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y(x3)代入C的方程,得1,即x23x80,解得x1,x2,AB的中点坐标,(x1x26),即中点坐标为(,)注:用韦达定理正确求得结果,同样给分16(2011新课标全国,5分)椭圆1的离心率为()A. B.C. D.解析:由1可得a216,b28,c2a2b28.e2.e.答案:D17(xx福建,5分)若点O和点F分别为椭圆1的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A2 B3C6 D8解析:由椭圆1,可得点F(1,0),点O(0,0),设P(x,y),2x2,则x2xy2x2x3(1)x2x3(x2)22,当且仅当x2时,取得最大值6.答案:C
展开阅读全文