中考数学二轮复习 专题二 解答重难点题型突破 题型一 简单几何图形的探究与计算课件.ppt

上传人:tia****nde 文档编号:2879956 上传时间:2019-12-03 格式:PPT 页数:25 大小:793.50KB
返回 下载 相关 举报
中考数学二轮复习 专题二 解答重难点题型突破 题型一 简单几何图形的探究与计算课件.ppt_第1页
第1页 / 共25页
中考数学二轮复习 专题二 解答重难点题型突破 题型一 简单几何图形的探究与计算课件.ppt_第2页
第2页 / 共25页
中考数学二轮复习 专题二 解答重难点题型突破 题型一 简单几何图形的探究与计算课件.ppt_第3页
第3页 / 共25页
点击查看更多>>
资源描述
题型一 简单几何图形的探究与计算,专题二 解答重难点题型突破,考情总结:简单几何图形的探究与计算是近五年河南中招考试的必考点,分值为9分,考查背景除2013年以四边形为背景外近四年均为圆,设问除2017年为与切线有关的证明与计算外,20132016年第二问均以填空题的形式探究特殊四边形存在时的条件,类型一 特殊四边形的探究(2013、2016.18,2014、2015.17) 【例1】如图,已知AB是半圆O的直径,ABC90,点D是半圆O上一动点(不与点A、B重合),且ADCO. (1)求证:CD是O的切线;,(2)填空:当BAD_度时,OBC和ABD的面积相等; 当BAD_度时,四边形OBCD是正方形.,60,45,【分析】(1)要证明CD是O的切线,连接OD.已知CBO是直角,则证明CODCOB,即可推出ODCOBC90,进而可得CD是O的切线;(2)OBC和ABD的面积相等,由AB2OB,根据特殊三角形的边角关系得BAD60时满足;当四边形OBCD是正方形则可得DOB90,AOD为等腰直角三角形,则BAD45.,【方法指导】河南中招考试中特殊四边形的探究为重点考查内容(1)首先需掌握特殊四边形的性质和判定条件等基本性质;(2)根据特殊四边形的判定条件和特殊四边形的性质,将所求的线段转化到直角三角形或相似三角形中,利用勾股定理或相似三角形对应边成比例列方程进行求解若所求值为角度时,考虑结合圆中直径所对的圆周角为直角,半径相等所构成的等腰三角形等,进行求解,45,3,45,类型二 几何问题的证明与计算(2017.18) 【例2】(2017丽水)如图,在RtABC中,C90,以BC为直径的O交AB于点D,切线DE交AC于点E. (1)求证:AADE; (2)若AD16,DE10,求BC的长.,【分析】(1)要证明AADE,根据等角的余角相等,只要证明AB90,ADEB90即可;(2)首先求得AC的长,在RtADC中,利用勾股定理求得DC,设出BD后在RtBDC和RtABC中,利用勾股定理分别表示出BC,联立方程求解即可,(1)证明:如解图,连接OD, DE是切线,ODE90, ADEBDO90, ACB90,AB90, ODOB,BBDO, AADE;,【对应训练】 1如图,已知平行四边形ABCD延长边DC到点E,使CEDC,连接AE,交BC于点F,连接AC、BE. (1)求证:BFCF; (2)若AB2,AD4,且AFC2D,求平行四边形ABCD的面积,(1)证明:四边形ABCD是平行四边形, ABCD,ABCD,BCAD, CEDC,ABEC,ABEC, 四边形ABEC是平行四边形,BFCF;,(1) 证明:如解图,连接OD,BD, BC是O的直径,BDC90,BDAC. ABBC,ADDC. OCOB,ODBC,DEAB,DEOD. 直线DE是O的切线;,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!